• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Buch
  4. Guideline for Designing Trustworthy Artificial Intelligence
 
  • Details
  • Full
Options
February 2023
Report
Title

Guideline for Designing Trustworthy Artificial Intelligence

Title Supplement
AI Assessment Catalog
Abstract
Artificial Intelligence (AI) has made impressive progress in recent years and represents a a crucial impact on the economy and society. Prominent use cases include applications in medical diagnostics,key technology that has predictive maintenance and, in the future, autonomous driving. However, it is clear that AI and business models based on it can only reach their full potential if AI applications are developed according to high quality standards and are effectively protected against new AI risks. For instance, AI bears the risk of unfair treatment of individuals when processing personal data e.g., to support credit lending or staff recruitment decisions. Serious false predictions resulting from minor disturbances in the input data are another example - for instance, when pedestrians are not detected by an autonomous vehicle due to image noise. The emergence of these new risks is closely linked to the fact that the process for developing AI applications, particularly those based on Machine Learning (ML), strongly differs from that of conventional software. This is because the behavior of AI applications is essentially learned from large volumes of data and is not predetermined by fixed programmed rules.
Author(s)
Poretschkin, Maximilian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schmitz, Anna  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Akila, Maram  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Adilova, Linara  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Becker, Daniel  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Cremers, Armin B.
Hecker, Dirk  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Houben, Sebastian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mock, Michael  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Rosenzweig, Julia  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sicking, Joachim
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schulz, Elena  
Voß, Angelika  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wrobel, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Editor(s)
Loh, Silke
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Stolberg, Evelyn
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Tomala, Annette Daria
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Person Involved
Kapusta, Achim
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ochel, Pascal
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Publisher
Fraunhofer IAIS
Project(s)
Kompetenzplattform KI.NRW
ZERTIFIZIERTE KI
Funder
Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen MWIDE
Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen MWIDE
File(s)
Download (5.72 MB)
Rights
Use according to copyright law
DOI
10.24406/publica-2991
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024