• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Point and Interval forecasts of death rates using neural networks
 
  • Details
  • Full
Options
2022
Journal Article
Title

Point and Interval forecasts of death rates using neural networks

Abstract
The Lee-Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network (NN) architecture for mortality rate forecasting, empirically compare this model as well as other NN models to the Lee-Carter model and find that lower forecast errors are achievable for many countries in the Human Mortality Database. We provide details on the errors and forecasts of our model to make it more understandable and, thus, more trustworthy. As NN by default only yield point estimates, previous works applying them to mortality modeling have not investigated prediction uncertainty. We address this gap in the literature by implementing a bootstrapping-based technique and demonstrate that it yields highly reliable prediction intervals for our NN model.
Author(s)
Schnürch, S.
Korn, R.
Journal
The Astin bulletin  
Open Access
DOI
10.1017/asb.2021.34
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024