• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Framework for energy efficiency optimization of industrial systems based on the Control Layer Model
 
  • Details
  • Full
Options
2019
Journal Article
Title

Framework for energy efficiency optimization of industrial systems based on the Control Layer Model

Abstract
In the context of sustainable manufacturing, the energy efficient operation of industrial systems is of major interest. This paper presents a modular framework for practical research about energy efficiency optimization of complex technical systems. Whereas many approaches focus on stand-alone machines or processes, this approach is concerned with energy-related coupling of several entities. Using a method for energy-related key performance indicators, the overall efficiency is deduced from all subsystems. A given topology is modeled in an XML-based format, inspired by AutomationML. The framework gives the opportunity to analyze and compare optimization algorithms. First experiments with two optimization algorithms were applied to a simulated cooling system.
Author(s)
Thiele, Gregor
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Heimann, Oliver  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Grabowski, Knut
Küger, Jörg
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Journal
Procedia manufacturing  
Project(s)
EnEffReg
Funder
Bundesministerium für Wirtschaft und Energie BMWi (Deutschland)  
Conference
Global Conference on Sustainable Manufacturing (GCSM) 2018  
Open Access
File(s)
Download (1000.19 KB)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
DOI
10.24406/publica-r-266398
10.1016/j.promfg.2019.04.051
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024