• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. OHO: A Multi-Modal, Multi-Purpose Dataset for Human-Robot Object Hand-Over
 
  • Details
  • Full
Options
2023
Journal Article
Title

OHO: A Multi-Modal, Multi-Purpose Dataset for Human-Robot Object Hand-Over

Abstract
In the context of collaborative robotics, handing over hand-held objects to a robot is a safety-critical task. Therefore, a robust distinction between human hands and presented objects in image data is essential to avoid contact with robotic grippers. To be able to develop machine learning methods for solving this problem, we created the OHO (Object Hand-Over) dataset of tools and other everyday objects being held by human hands. Our dataset consists of color, depth, and thermal images with the addition of pose and shape information about the objects in a real-world scenario. Although the focus of this paper is on instance segmentation, our dataset also enables training for different tasks such as 3D pose estimation or shape estimation of objects. For the instance segmentation task, we present a pipeline for automated label generation in point clouds, as well as image data. Through baseline experiments, we show that these labels are suitable for training an instance segmentation to distinguish hands from objects on a per-pixel basis. Moreover, we present qualitative results for applying our trained model in a real-world application.
Author(s)
Stephan, Benedict
Köhler, Mona
Müller, Steffen
Zhang, Yan
Gross, Horst-Michael
Notni, Gunther  
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Journal
Sensors. Online journal  
Open Access
DOI
10.3390/s23187807
Language
English
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Keyword(s)
  • | | | | |

  • automated labeling

  • dataset

  • hand-over

  • semantic segmentation

  • thermal image

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024