• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Minimal rotations in arbitrary dimensions with applications to hypothesis testing and parameter estimation
 
  • Details
  • Full
Options
2025
Journal Article
Title

Minimal rotations in arbitrary dimensions with applications to hypothesis testing and parameter estimation

Abstract
The rotation of a vector around the origin and in a plane constitutes a minimal rotation. Such a rotation is of vital importance in many applications. Examples are the re-orientation of spacecraft or antennas with minimal effort, the smooth interpolation between sensor poses, and the drawing of circular arcs in 2D and 3D. In numerical linear algebra, minimal rotations in different planes are used to manipulate matrices, e.g., to compute the QR decomposition of a matrix. This review compiles the concepts and formulas for minimal rotations in arbitrary dimensions for easy reference and provides a summary of the mathematical background necessary to understand the techniques described in this paper. The discussed concepts are accompanied by important examples in the context of photogrammetric image analysis. Hypothesis testing and parameter estimation for uncertain geometric entities are described in detail. In both applications, minimal rotations play an important role.
Author(s)
Meidow, Jochen  orcid-logo
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Hammer, Horst  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Journal
ISPRS open journal of photogrammetry and remote sensing  
Open Access
DOI
10.1016/j.ophoto.2025.100085
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024