• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Informed Pre-Training on Prior Knowledge
 
  • Details
  • Full
Options
May 23, 2022
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Informed Pre-Training on Prior Knowledge

Title Supplement
Published on arXiv
Abstract
When training data is scarce, the incorporation of additional prior knowledge can assist the learning process. While it is common to initialize neural networks with weights that have been pre-trained on other large data sets, pre-training on more concise forms of knowledge has rather been overlooked. In this paper, we propose a novel informed machine learning approach and suggest to pre-train on prior knowledge. Formal knowledge representations, e.g. graphs or equations, are first transformed into a small and condensed data set of knowledge prototypes. We show that informed pre-training on such knowledge prototypes (i) speeds up the learning processes, (ii) improves generalization capabilities in the regime where not enough training data is available, and (iii) increases model robustness. Analyzing which parts of the model are affected most by the prototypes reveals that improvements come from deeper layers that typically represent high-level features. This confirms that informed pre-training can indeed transfer semantic knowledge. This is a novel effect, which shows that knowledge-based pre-training has additional and complementary strengths to existing approaches.
Author(s)
Rüden, Laura von  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Houben, Sebastian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Cvejoski, Kostadin  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Piatkowski, Nico  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
DOI
10.48550/arXiv.2205.11433
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024