• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Electricity Price Forecasting with Neural Networks on EPEX Order Books
 
  • Details
  • Full
Options
2020
Journal Article
Title

Electricity Price Forecasting with Neural Networks on EPEX Order Books

Abstract
This paper employs machine learning algorithms to forecast German electricity spot market prices. The forecasts utilize in particular bid and ask order book data from the spot market but also fundamental market data like renewable infeed and expected total demand. Appropriate feature extraction for the order book data is developed proceeding from existing literature. Using cross-validation to optimize hyperparameters, neural networks and random forests are fit to the data. Their in-sample and out-of-sample performance is compared to statistical reference models. The machine learning models outperform traditional approaches.
Author(s)
Schnürch, Simon  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Wagner, Andreas
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Applied mathematical finance  
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Open Access
DOI
10.1080/1350486X.2020.1805337
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024