Options
2021
Conference Paper
Titel
First demonstration of nonlinear interferometry in the terahertz frequency range
Abstract
Using nonlinear interferometers is highly attractive for accessing spectral regions in which the photon detection is technically challenging. Especially for terahertz radiation this is a long-lasting problem, as their photon energy is in the range of a few meV. Therefore, the properties of terahertz photons after interaction with a sample are transferred to visible photons, whose detection can be realized by widely available imaging sensors. We demonstrated this concept with terahertz photons propagating in free space, determining the thickness of polytetrafluoroethylene plates by only detecting visible photons. We utilized a nonlinear interferometer with one periodically poled lithium niobate crystal driven by a 660-nm pump source. In the crystal, pairs of visible signal and correlated terahertz photons are created and separated into different paths of the interferometer afterwards. The terahertz photons pass the sample and gain information that can be transferred to the visible photons. To detect the signal photons with an uncooled sCMOS camera, the pump photons are filtered out by narrowband volume Bragg gratings. As the signal photons are mainly generated by down - and up-conversion of thermal photons besides spontaneous parametric down-conversion, the frequency-angular spectra show nonlinear interference in the Stokes and anti-Stokes regions. This interference can be used to assess information of coatings that are mainly transparent in the terahertz frequency range. Establishing on this first demonstration of a nonlinear interferometer with terahertz photons, we improved the visibility by a factor of 3 by modifying the experimental setup, helping this concept on its way towards industrial applications.
Author(s)