• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Trimodal hierarchical carbide-derived carbon monoliths from steam- and CO2-activated wood templates for high rate lithium sulfur batteries
 
  • Details
  • Full
Options
2015
Journal Article
Title

Trimodal hierarchical carbide-derived carbon monoliths from steam- and CO2-activated wood templates for high rate lithium sulfur batteries

Abstract
Hierarchically structured biomorphic carbide-derived carbon (CDC) materials are obtained by applying a combined activation- and CDC approach on abundantly available, renewable and cheap raw materials. For the synthesis of these materials we mimic nature by using wood structures as templates which are already optimized for mass transport during their long-term evolutional process. The impregnation of steam- or carbon dioxide-pre-activated wood templates with a polycarbosilane precursor and the subsequent halogen treatment yields a hierarchical material that exhibits longitudinally orientated macropores from the wood structure as well as well-defined and narrowly distributed micro- and meso-pores derived from the activation and CDC approach. These materials offer specific surface areas up to 1750 m2 g−1, micro-/meso-pore volumes up to 1.0 cm3 g−1 and macropore volumes of 1.2 cm3 g−1. This sophisticated hierarchical pore system ensures both efficient mass transfer and high specific surface area, ideal for mass transport limited applications, such as the lithium sulfur battery. Testing steam activated wood-CDCs as cathode materials for Li-S batteries reveals excellent performance, especially a highly stable discharge capacity and sulfur utilization. Stable capacities of over 580 mA h gsulfur−1 at current densities exceeding 20 mA cm−2 (2C) are possible using only very low amounts of electrolyte of 6.8 mL mgsulfur−1.
Author(s)
Adam, Marion A.
TU Dresden, Department of Inorganic Chemistry
Strubel, Patrick
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Borchardt, Lars
TU Dresden, Department of Inorganic Chemistry
Althues, Holger  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Dörfler, Susanne  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Kaskel, Stefan  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Journal
Journal of materials chemistry. A, Materials for energy and sustainability  
Open Access
DOI
10.1039/C5TA06782K
Additional link
Full text
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024