Options
2021
Journal Article
Title
Predictive analytics in quality assurance for assembly processes: lessons learned from a case study at an industry 4.0 demonstration cell
Abstract
Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.
Author(s)
Burggräf, Peter
Chair of International Production Engineering and Management (IPEM), Universität Siegen
Wagner, Johannes
Chair of International Production Engineering and Management (IPEM), Universität Siegen
Heinbach, Benjamin
Chair of International Production Engineering and Management (IPEM), Universität Siegen
Steimnberg, Fabian
Chair of International Production Engineering and Management (IPEM), Universität Siegen
Pèrez M., Alejandro R.
Chair of International Production Engineering and Management (IPEM), Universität Siegen
Schmallenbach, Lennart
Chair of International Production Engineering and Management (IPEM), Universität Siegen