• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards German Word Embeddings: A Use Case with Predictive Sentiment Analysis
 
  • Details
  • Full
Options
2017
Conference Paper
Title

Towards German Word Embeddings: A Use Case with Predictive Sentiment Analysis

Abstract
Despite the research boom on words embeddings and their text mining applications from the last years, the vast majority of publications focus only on the English language. Furthermore, hyperparameter tuning is a rarely well documented process (specially for non English text) that is necessary to obtain high quality word representations. In this work, we present how different hyperparameter combinations impact the resulting German word vectors and how these word representations can be part of more complex models. In particular, we perform first an intrinsic evaluation of our German word embeddings, which are later used within a predictive sentiment analysis model. The latter does not only serve as an extrinsic evaluation of the German word embeddings but also shows the feasibility of predic ting preferences only from document embeddings.
Author(s)
Brito, Eduardo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Cvejoski, Kostadin  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ojeda, César  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Data Science - Analytics and Applications  
Conference
International Data Science Conference (iDSC) 2017  
DOI
10.1007/978-3-658-19287-7_8
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024