• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Predicting CO2 Emissions in Circular Economy Transitions: A Bayesian Network Approach under Data Uncertainty
 
  • Details
  • Full
Options
2025
Journal Article
Title

Predicting CO2 Emissions in Circular Economy Transitions: A Bayesian Network Approach under Data Uncertainty

Abstract
For the transition to a circular economy, an accurate assessment of CO2 emissions from production processes is essential to make informed end-of-life decisions. Product passports and management shell models can fill these gaps but are currently at the very beginning of their introduction in industrial processes and are too comprehensive and data-intensive for widespread use across many components. To address this problem, we propose a Bayesian network model that predicts the CO2 emissions of the production of a component and incomplete data. It combines information from metadata with concrete knowledge of process flows to provide statistically supported quantitative statements.
Author(s)
Schmidt, Patrick Alexander  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Frieß, Uwe  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Journal
Procedia CIRP  
Conference
Design Conference 2025  
Open Access
File(s)
Download (1.01 MB)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
DOI
10.1016/j.procir.2025.08.072
10.24406/publica-5512
Additional link
Full text
Language
English
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Keyword(s)
  • Bayesian Network

  • Circular Economy

  • CO2-prediction

  • End-of-Life-Decision

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024