• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells
 
  • Details
  • Full
Options
2015
Journal Article
Title

Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells

Abstract
We investigated hybrid inorganic-organic solar cells combining monocrystalline n-type silicon (n-Si) and a highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). The build-in potential, photo- and dark saturation current at this hybrid interface are monitored for varying n-Si doping concentrations. We corroborate that a high build-in potential forms at the hybrid junction leading to strong inversion of the n-Si surface. By extracting work function and valence band edge of the polymer from ultraviolet photoelectron spectroscopy, a band diagram of the hybrid n-Si/PEDOT:PSS heterojunction is presented. The current-voltage characteristics were analyzed using Schottky and abrupt pn-junction models. The magnitude as well as the dependence of dark saturati on current on n-Si doping concentration proves that the transport is governed by diffusion of minority charge carriers in the n-Si and not by thermionic emission of majorities over a Schottky barrier. This leads to a comprehensive explanation of the high observed open-circuit voltages of up to 634 mV connected to high conversion efficiency of almost 14%, even for simple planar device structures without antireflection coating or optimized contacts. The presented work clearly shows that PEDOT:PSS forms a hybrid heterojunction with n-Si behaving similar to a conventional pn-junction and not, like commonly assumed, a Schottky junction.
Author(s)
Jäckle, Sara
Institut Nanoarchitekturen für die Energieumwandlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Max-Planck-Institute for the Science of Light
Mattiza, Matthias
Institut Nanoarchitekturen für die Energieumwandlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Liebhaber, Martin
Energy Materials In-Situ Laboratory Berlin (EMIL), Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Brönstrup, Gerald
Institut Nanoarchitekturen für die Energieumwandlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Max-Planck-Institute for the Science of Light
Rommel, Mathias  orcid-logo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Lips, Klaus
Energy Materials In-Situ Laboratory Berlin (EMIL), Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Christiansen, Silke
Institut Nanoarchitekturen für die Energieumwandlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Max-Planck-Institute for the Science of Light
Journal
Scientific Reports  
Project(s)
Engineering of Advanced Materials
SISSY
Funder
Deutsche Forschungsgemeinschaft DFG  
Deutsche Forschungsgemeinschaft DFG  
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Open Access
DOI
10.1038/srep13008
Link
Link
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024