• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Mixing flows in dynamic fluid transport simulations
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Mixing flows in dynamic fluid transport simulations

Abstract
This paper presents a new numerically efficient implementation of flow mixing algorithms in dynamic simulation of pipeline fluid transport. Mixed characteristics include molar mass, heat value, chemical composition and the temperature of the transported fluids. In the absence of chemical reactions, the modeling is based on the universal conservation laws for molar flows and total energy. The modeling formulates a sequence of linear systems, solved by a sparse linear solver, typically in one iteration per integration step. The functionality and stability of the developed simulation methods have been tested on a number of realistic network scenarios. The main output of the paper is a functioning and stable implementation of flow mixing algorithms for dynamic simulation of fluid transport networks.
Author(s)
Anvari, Mehrnaz
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Baldin, Anton  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Clees, Tanja  orcid-logo
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Klaassen, Bernhard  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Nikitin, Igor  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Nikitina, Lialia  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Mainwork
ADVCOMP 2024: the Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences  
Conference
International Conference on Advanced Engineering Computing and Applications in Sciences 2024  
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024