• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Integrating Cloud Computing, Bayesian Optimization, and Neural-Additive Modeling for Enhanced CAM Systems in 5-Axis Milling
 
  • Details
  • Full
Options
October 15, 2024
Journal Article
Title

Integrating Cloud Computing, Bayesian Optimization, and Neural-Additive Modeling for Enhanced CAM Systems in 5-Axis Milling

Abstract
This publication introduces the development and application of an advanced CAD/CAM/CAE system that leverages the computational capabilities of an edge-cloud infrastructure. The developed system consists of containerized technology models for various complex process planning simulation tasks in 5-axis-milling, such as toolpath calculation, cutter-workpiece-engagement, uncut chip geometry or cutting force simulations. Moreover, a Bayesian optimization (BO) algorithm is coupled with the system enabling multi-objective optimizations of the considered machining operations by varying predefined CAM-parameters. The result of the optimization consists of a set of Pareto-efficient solutions. Each solution realizes a different tradeoff between the technological objectives of the process planner. Since mastering the complexity of the design space is a major challenge in today’s CAM programming workflow, a Neural-Additive Model (NAM) is coupled with the system improving guided search through the configuration/result space. This reduces the convergence time to an optimal CAM parameter set. The coupling of the cloud computing, multi-objective optimization and artificial intelligence method with a CAM-kernel is demonstrated based on the process design of 5-axis milling operations for a blade-integrated disk (blisk).
Author(s)
Rudel, Viktor  orcid-logo
Fraunhofer-Institut für Produktionstechnologie IPT  
Vinogradov, Georg
Fraunhofer-Institut für Produktionstechnologie IPT  
Ganser, Philipp  
Fraunhofer-Institut für Produktionstechnologie IPT  
Bergs, Thomas  
Fraunhofer-Institut für Produktionstechnologie IPT  
Vahl, Christopher  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Frings, Markus
ModuleWorks GmbH
König, Valentina
ModuleWorks GmbH
Schambach, Maximilian
Merantix Momentum
Dietzel, Stefan
Merantix Momentum
Königs, Michael
EXAPT Systemtechnik GmbH
Journal
Procedia CIRP  
Project(s)
Entwicklung einer innovativen Lösung für das Advanced Systems Engineering der computergestützten Prozessplanung der Zukunft  
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Conference
Design Conference 2024  
Open Access
DOI
10.1016/j.procir.2024.04.015
10.24406/h-478928
File(s)
Full text_2024.pdf (915.89 KB)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • Computer-aided manufacturing systems (CMS)

  • Multi-objective optimization

  • Design methodology

  • Tools

  • Technologies

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024