• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Explanation as a Process: User-Centric Construction of Multi-level and Multi-modal Explanations
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Explanation as a Process: User-Centric Construction of Multi-level and Multi-modal Explanations

Abstract
In the last years, XAI research has mainly been concerned with developing new technical approaches to explain deep learning models. Just recent research has started to acknowledge the need to tailor explanations to different contexts and requirements of stakeholders. Explanations must not only suit developers of models, but also domain experts as well as end users. Thus, in order to satisfy different stakeholders, explanation methods need to be combined. While multi-modal explanations have been used to make model predictions more transparent, less research has focused on treating explanation as a process, where users can ask for information according to the level of understanding gained at a certain point in time. Consequently, an opportunity to explore explanations on different levels of abstraction should be provided besides multi-modal explanations. We present a process-based approach that combines multi-level and multi-modal explanations. The user can ask for textual explanations or visualizations through conversational interaction in a drill-down manner. We use Inductive Logic Programming, an interpretable machine learning approach, to learn a comprehensible model. Further, we present an algorithm that creates an explanatory tree for each example for which a classifier decision is to be explained. The explanatory tree can be navigated by the user to get answers of different levels of detail. We provide a proof-of-concept implementation for concepts induced from a semantic net about living beings.
Author(s)
Finzel, B.
Tafler, D.E.
Scheele, S.
Schmid, U.
Mainwork
KI 2021: Advances in Artificial Intelligence. 44th German Conference on AI. Proceedings  
Conference
German Conference on Artificial Intelligence (KI) 2021  
DOI
10.1007/978-3-030-87626-5_7
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024