• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Cloud-Based Identification of Dynamic Trailer States
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Cloud-Based Identification of Dynamic Trailer States

Abstract
A current trend in the commercial vehicle industry are autonomous trucks and tractor-semitrailers which will lead to an increasing automation of functions and autonomous transport processes in the future. In this contribution, we present the IdenT system concept, which has been developed for tractor-semitrailers within the research project of the same name, consisting of an intelligent trailer sensor network, a cloud-based data platform and methods for on- and offline data processing. In this work, we focus on the offline process, by presenting its architecture and main functions. As fundamental elements of the offline process, the digital twin of the trailer, i.e., a detailed multi-body model with current inputs and parameters acquired via the system’s online setup, and the methodology to identify the road profile are presented in detail. We show and discuss results of the offline process for some demonstration cases that illustrate how the simulation of the trailer digital twin with identified road profiles can provide a valuable identification of the trailer’s real system dynamics. Moreover, some expected limits of the approach and results of some representative signals are discussed for the demonstration cases.
Author(s)
Burger, Michael  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Holfeld, Vicky
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Steidel, Stefan
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Bartolozzi, Riccardo  orcid-logo
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF  
Möller, Riccardo  
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF  
Brand, André
BPW Bergische Achsen KG
Weßel, Simon
BPW Bergische Achsen KG
Kobler, Jan-Philipp
BPW Bergische Achsen KG
Mainwork
Commercial Vehicle Technology 2024  
Conference
International Commercial Vehicle Technology Symposium 2024  
DOI
10.1007/978-3-658-45699-3_15
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF  
Keyword(s)
  • commercial vehicle industry

  • autonomous trucks and tractor-semitrailers

  • IdenT system concept

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024