• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Benchmark and Survey of Automated Machine Learning Frameworks
 
  • Details
  • Full
Options
2021
Journal Article
Title

Benchmark and Survey of Automated Machine Learning Frameworks

Abstract
Machine learning (ML) has become a vital part in many aspects of our daily life. However, building well performing machine learning applications requires highly specialized data scientists and domain experts. Automated machine learning (AutoML) aims to reduce the demand for data scientists by enabling domain experts to build machine learning applications automatically without extensive knowledge of statistics and machine learning. This paper is a combination of a survey on current AutoML methods and a benchmark of popular AutoML frameworks on real data sets. Driven by the selected frameworks for evaluation, we summarize and review important AutoML techniques and methods concerning every step in building an ML pipeline. The selected AutoML frameworks are evaluated on 137 data sets from established AutoML benchmark suits.
Author(s)
Zöller, Marc-André
USU Software AG
Huber, Marco  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Journal
The journal of artificial intelligence research : JAIR  
Open Access
DOI
10.1613/jair.1.11854
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • Künstliche Intelligenz

  • maschinelles Lernen

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024