• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Joint Parameter and State-Space Modelling of Manufacturing Processes using Gaussian Processes
 
  • Details
  • Full
Options
December 9, 2024
Conference Paper
Title

Joint Parameter and State-Space Modelling of Manufacturing Processes using Gaussian Processes

Abstract
Manufacturing process optimization is an open question, where Bayesian decision theoretic methods have shown considerable promise. One such is Bayesian optimization, with Gaussian Process (GP) surrogate model. This paper explores Gaussian Processes networks to jointly use parameter and observed state to predict the output(s) of a manufacturing process. The Gaussian process network that represents the paths from parameters to state-space to tasks, provides a methodology to ‘look inside’ the black-box of complex manufacturing processes. We present a comparative analysis of this method against the multi-task Gaussian processes and single-task counterparts, highlighting the benefits and drawbacks of each in modelling the behavior of such processes. We show the benefits of the proposed approach using numerical experiments. We show that we are able to improve the output prediction by additional sensor observations from inside the process at training time without needing those sensor observations for predicting product quality given the process parameters.
Author(s)
Kiroriwal, Saksham
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Pfrommer, Julius  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mende, Hendrik  
Fraunhofer-Institut für Produktionstechnologie IPT  
Schmitt, Robert H.  
Fraunhofer-Institut für Produktionstechnologie IPT  
Beyerer, Jürgen  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
IEEE 22nd International Conference on Industrial Informatics, INDIN 2024. Proceedings  
Conference
International Conference on Industrial Informatics 2024  
DOI
10.1109/INDIN58382.2024.10774428
10.24406/h-481634
File(s)
Full text.pdf (937.46 KB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Produktionstechnologie IPT  
Keyword(s)
  • Training

  • Manufacturing processes

  • Gaussian processes

  • Multitasking

  • Product design

  • Numerical models

  • Bayes methods

  • Quality assessment

  • Informatics

  • Optimization

  • Gaussian Process Network

  • Joint Parameter and State-Space Model

  • Function Network

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024