• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Non-nominal path planning of assembly processes
 
  • Details
  • Full
Options
2005
Conference Paper
Title

Non-nominal path planning of assembly processes

Abstract
One important aspect in the assembly process design is to assure that there exist a collision-free assembly path for each part and subassembly. In order to reduce the need of physical verification the automotive industry use digital mock-up tool with collision checking for this kind of geometrical assembly analysis. To manually verify assembly feasibility in a digital mock-up tool can be hard and time consuming. Therefore, the recent development of efficient and effective automatic path planning algorithm and tools are highly motivated. However, in real production, all equipment, parts and subassemblies are inflicted by geometrical variation, often resulting in conflicts and on-line adjustments of off-line generated assembly paths. To avoid problems with on-line adjustments, state-of-the-art tools for path-planning can handle tolerances by a general clearance for all geometry. This is a worst-case strategy, not taking account for how part and assembly variation propagat es through the positioning systems of the assembly resulting in geometry areas of both high and low degree of variation. Since, this latter approach results in unnecessary design changes or in too tight tolerances we have developed a new algorithm and working procedure enabling and supporting a more cost effective non-nominal path planning process for assembly operations. The basic idea of the paper is to combine state of the art technology within variation simulation and automatic path planning. By integrating variation and tolerance simulation results into the path planning algorithm we can allow the assembly path going closer to areas of low variation, while avoiding areas of high variation. The benefits of the proposed approach are illustrated on an industrial case from the automotive industry.
Author(s)
Carlson, J.S.
Söderberg, R.
Bohlin, R.
Lindkvist, L.
Hermansson, T.
Mainwork
Manufacturing engineering and materials handling 2005. Pt.A  
Conference
International Mechanical Engineering Congress and Exposition (IMECE) 2005  
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024