• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A Small Electrolyte Drop Enables a Disruptive Semisolid High-Energy Sulfur Battery Cell Design via an Argyrodite-Based Sulfur Cathode in Combination with a Metallic Lithium Anode
 
  • Details
  • Full
Options
January 1, 2024
Journal Article
Title

A Small Electrolyte Drop Enables a Disruptive Semisolid High-Energy Sulfur Battery Cell Design via an Argyrodite-Based Sulfur Cathode in Combination with a Metallic Lithium Anode

Abstract
Lithium-sulfur batteries with liquid electrolytes are discussed as the most promising post-lithium-ion-battery technology in literature due to their high theoretical specific energy and first prototype cells delivering >470 Wh kg-1. Although several electrolyte and material concepts are developed that partially solve the issue of the so-called shuttle mechanism, the most promising concept to genuinely confine sulfur species in the cathode is all-solid-state argyrodite-sulfur cathodes leading to almost theoretical active material utilization by maintaining reasonable sulfur loadings and electrolyte to sulfur ratios. However, this battery concept has so far not achieved reversible cycling against metallic lithium anodes as it requires high pressures for manufacturing, and ductile lithium metal creeps along the grain boundaries of the solid electrolyte particles leading to short cuts of the cells. Recent findings show that metallic lithium, however, can be stably cycled with dimethoxyethane/lithium-bis(fluorosulfonyl)imide (DME/LiFSI)-based electrolytes. Herein, for the first time, a semisolid concept is presented combining the benefits of an argyrodite-based solid-state cathode and a DME/LiFSI/hydrofluoroether-based anolyte concept - in coin cells and first pouch cells. This disruptive approach enables projected specific energies higher than 600 Wh kg-1 at cell stack level.
Author(s)
Kirchhoff, Sebastian
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Fiedler, Magdalena
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Dupuy, Arthur
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Härtel, Paul  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Semmler, Maria
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Hippauf, Felix  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Dörfler, Susanne  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Schumm, Benjamin  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Abendroth, Thomas  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Althues, Holger  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Kaskel, Stefan  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Journal
Advanced energy materials  
Open Access
DOI
10.1002/aenm.202402204
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Keyword(s)
  • argyrodites

  • hydrofluorethers

  • lithium-sulfur batteries

  • pouch cells

  • semisolid concepts

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024