• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Surface inspection planning for laser line scanners
 
  • Details
  • Full
Options
2016
Conference Paper
Titel

Surface inspection planning for laser line scanners

Abstract
The important role of automated visual methods in industrial product inspection necessitates the design of optimized and precise measurement setups. Due to the high dimensionality of the design space, the manual choice of the geometrical and optical parameters is tedious and often not optimal. In this article we study the problem of inspection planning for laser line scanners which are affordable and widely-used inspection tools. To this end, the measurement model is defined and appropriate evaluation metrics are introduced, which formulate the optimization problem in terms of a number of constrains and cost functions. Visibility analysis, lateral resolution, range resolution, and the measurement uncertainty are of the main metrics we cover. Computer graphics simulations are utilized to simulate the measurement in different setup configurations and estimate the evaluation metrics. We also propose a general uncertainty model which can be applied for modeling the uncertainty in laser scanners. The optimum laser scanner setup can be achieved by optimizing the defined evaluation metrics using a multi-objective approach.
Author(s)
Mohammadikaji, M.
Hauptwerk
Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory 2015. Proceedings
Konferenz
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation and Institute for Anthropomatics, Vision and Fusion Laboratory (Joint Workshop) 2015
DOI
10.24406/publica-fhg-393395
File(s)
N-417575.pdf (755.58 KB)
Language
English
google-scholar
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022