• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Estimation of prediction uncertainty for semantic scene labeling using bayesian approximation
 
  • Details
  • Full
Options
2018
Master Thesis
Titel

Estimation of prediction uncertainty for semantic scene labeling using bayesian approximation

Abstract
With the advancement in technology, autonomous and assisted driving are close to being reality. A key component of such systems is the understanding of the surrounding environment. This understanding about the environment can be attained by performing semantic labeling of the driving scenes. Existing deep learning based models have been developed over the years that outperform classical image processing algorithms for the task of semantic labeling. However, the existing models only produce semantic predictions and do not provide a measure of uncertainty about the predictions. Hence, this work focuses on developing a deep learning based semantic labeling model that can produce semantic predictions and their corresponding uncertainties. Autonomous driving needs a real-time operating model, however the Full Resolution Residual Network (FRRN) [4] architecture, which is found as the best performing architecture during literature search, is not able to satisfy this condition. Hence, a small network, similar to FRRN, has been developed and used in this work. Based on the work of [13], the developed network is then extended by adding dropout layers and the dropouts are used during testing to perform approximate Bayesian inference. The existing works on uncertainties, do not have quantitative metrics to evaluate the quality of uncertainties estimated by a model. Hence, the area under curve (AUC) of the receiver operating characteristic (ROC) curves is proposed and used as an evaluation metric in this work. Further, a comparative analysis about the influence of dropout layer position, drop probability and the number of samples, on the quality of uncertainty estimation is performed. Finally, based on the insights gained from the analysis, a model with optimal configuration of dropout is developed. It is then evaluated on the Cityscape dataset and shown to be outperforming the baseline model with an AUC-ROC of about 90%, while the latter having AUC-ROC of about 80%.
ThesisNote
Sankt Augustin, Hochschule Bonn-Rhein-Sieg, Master Thesis, 2018
Author(s)
Ajmera, Anand
Verlagsort
Bonn
DOI
10.24406/publica-fhg-281968
File(s)
N-484660.pdf (7.01 MB)
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022