• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Automated Auditing with Machine Learning
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Towards Automated Auditing with Machine Learning

Abstract
We present the Automated List Inspection (ALI) tool that utilizes methods from machine learning, natural language processing, combined with domain expert knowledge to automate financial statement auditing. ALI is a content based context-aware recommender system, that matches relevant text passages from the notes to the financial statement to specific law regulations. In this paper, we present the architecture of the recommender tool which includes text mining, language modeling, unsupervised and supervised methods that range from binary classification models to deep recurrent neural networks. Next to our main findings, we present quantitative and qualitative comparisons of the algorithms as well as concepts for how to further extend the functionality of the tool.
Author(s)
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ladi, Anna  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pielka, Maren  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ramamurthy, Rajkumar  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hillebrand, Lars Patrick  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Kirsch, Birgit  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Biesner, David  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Stenzel, Robin
Bell, Thiago
Lübbering, Max  
Nütten, Ulrich  
Bauckhage, Christian  
Warning, U.
Fürst, Benedikt
Khameneh, Tim Dilmaghani
Thom, D.
Huseynov, I.
Kahlert, R.
Schlums, J.
Ismail, H.
Kliem, B.
Loitz, Rüdiger
Mainwork
DocEng 2019, 19th ACM Symposium on Document Engineering. Proceedings  
Conference
Symposium on Document Engineering (DocEng) 2019  
DOI
10.1145/3342558.3345421
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • text mining

  • business process optimization

  • automated auditing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024