• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Automated Auditing with Machine Learning
 
  • Details
  • Full
Options
2019
Conference Paper
Titel

Towards Automated Auditing with Machine Learning

Abstract
We present the Automated List Inspection (ALI) tool that utilizes methods from machine learning, natural language processing, combined with domain expert knowledge to automate financial statement auditing. ALI is a content based context-aware recommender system, that matches relevant text passages from the notes to the financial statement to specific law regulations. In this paper, we present the architecture of the recommender tool which includes text mining, language modeling, unsupervised and supervised methods that range from binary classification models to deep recurrent neural networks. Next to our main findings, we present quantitative and qualitative comparisons of the algorithms as well as concepts for how to further extend the functionality of the tool.
Author(s)
Sifa, Rafet
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Ladi, Anna
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Pielka, Maren
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Ramamurthy, Rajkumar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Hillebrand, Lars Patrick
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Kirsch, Birgit
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Biesner, David
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Stenzel, Robin
Bell, Thiago
Lübbering, Max
Nütten, Ulrich
Bauckhage, Christian
Warning, U.
Fürst, Benedikt
Khameneh, Tim Dilmaghani
Thom, D.
Huseynov, I.
Kahlert, R.
Schlums, J.
Ismail, H.
Kliem, B.
Loitz, Rüdiger
Hauptwerk
DocEng 2019, 19th ACM Symposium on Document Engineering. Proceedings
Konferenz
Symposium on Document Engineering (DocEng) 2019
Thumbnail Image
DOI
10.1145/3342558.3345421
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Tags
  • text mining

  • business process optimization

  • automated auditing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022