• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Adaptive Loop Filter with a CNN-Based Classification
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Adaptive Loop Filter with a CNN-Based Classification

Abstract
In this paper, a data-driven generalization of the adaptive loop filter (ALF) of Versatile Video Coding (VVC) is presented. It is shown how the conventional ALF process of classification and FIR filtering can be generalized to define a natural model architecture for convolutional neural network (CNN) based in-loop filters. Experimental results show that over VVC, average bit-rate savings of 3.85%/4.75% and 4.39%/4.33% can be achieved for the all intra and random access configurations in the low- and high-QP settings.
Author(s)
Lim, Wang-Q
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Pfaff, Jonathan
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Stallenberger, Björn
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Erfurt, Johannes
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Schwarz, Heiko  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Marpe, Detlev  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Wiegand, Thomas  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Mainwork
IEEE International Conference on Image Processing 2022. Proceedings  
Conference
International Conference on Image Processing 2022  
DOI
10.1109/ICIP46576.2022.9897666
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Keyword(s)
  • Adaptive loop filter

  • classification

  • convolutional neural network

  • Wiener filtering

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024