• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. evoBOT - Design and Learning-Based Control of a Two-Wheeled Compound Inverted Pendulum Robot
 
  • Details
  • Full
Options
2023
Conference Paper
Title

evoBOT - Design and Learning-Based Control of a Two-Wheeled Compound Inverted Pendulum Robot

Abstract
This paper introduces evoBOT, a novel robot platform for research on highly dynamic locomotion and human-machine interaction. evoBOT is capable of performing complex tasks such as handovers or manipulation while moving at high speeds. We provide an overview of the robot's core features and the underlying design decisions on both the mechanical and the electronic level. Moreover, we propose a reinforcement learning (RL) based control approach for training highly dynamic motions that is evaluated on a first set of robotic tasks, including robust balancing and dynamic locomotion. Lastly, we conduct extensive benchmarking on the adopted sim-to-real methods and present an initial sim-to-real pipeline for first transfer of the trained policies to the real robot. To accelerate robotics research in this direction, the full simulation model of the robot is released as open-source.
Author(s)
Klokowski, Patrick  
Fraunhofer-Institut für Materialfluss und Logistik IML  
Eßer, Julian
Fraunhofer-Institut für Materialfluss und Logistik IML  
Gramse, Nils
Fraunhofer-Institut für Materialfluss und Logistik IML  
Pschera, Benedikt
Fraunhofer-Institut für Materialfluss und Logistik IML  
Plitt, Marc
Fraunhofer-Institut für Materialfluss und Logistik IML  
Feldmeier, Frido
Fraunhofer-Institut für Materialfluss und Logistik IML  
Bajpai, Shubham
Fraunhofer-Institut für Materialfluss und Logistik IML  
Jestel, Christian  
Fraunhofer-Institut für Materialfluss und Logistik IML  
Bach, Nicolas
Fraunhofer-Institut für Materialfluss und Logistik IML  
Urbann, Oliver  
Fraunhofer-Institut für Materialfluss und Logistik IML  
Kerner, Sören  
Fraunhofer-Institut für Materialfluss und Logistik IML  
Mainwork
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023  
Conference
International Conference on Intelligent Robots and Systems 2023  
DOI
10.1109/IROS55552.2023.10342128
Language
English
Fraunhofer-Institut für Materialfluss und Logistik IML  
Keyword(s)
  • Human robot interaction

  • Inverted pendulum

  • Machine design

  • Reinforcement learning

  • Complex task

  • Core features

  • Design decisions

  • Electronic levels

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024