Options
2019
Conference Paper
Title
Deep query ranking for question answering over knowledge bases
Abstract
We study question answering systems over knowledge graphs which map an input natural language question into candidate formal queries. Often, a ranking mechanism is used to discern the queries with higher similarity to the given question. Considering the intrinsic complexity of the natural language, finding the most accurate formal counter-part is a challenging task. In our recent paper [1], we leveraged Tree-LSTM to exploit the syntactical structure of input question as well as the candidate formal queries to compute the similarities. An empirical study shows that taking the structural information of the input question and candidate query into account enhances the performance, when compared to the baseline system. Code related to this paper is available at: https://github.com/AskNowQA/SQG.