• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Light scattering in poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic use
 
  • Details
  • Full
Options
2017
Journal Article
Title

Light scattering in poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic use

Abstract
Scattering of ophthalmic devices is a complex phenomenon involving both surface and bulk light-material interactions. In this work, light scattering of nanocellulose reinforced PVA hydrogels contact lenses for ophthalmic applications was investigated. Optical microscopy, fluorescence microscopy and atomic force microscopy (AFM) techniques were used for ultrastructure characterization. Further, 3D angle resolved light scattering measurements in the visible spectral range were performed using a BTDF (bidirectional transmittance distribution function) sensor to quantify the scattered light. Surface and bulk scattering properties were discerned using white light interferometry. Total scatter levels ranging from 3% to 40% were observed depending on the hydrogel composition. The most critical factor affecting the light scattering properties in nanocellulose-reinforced PVA hydrogels was related to the state of hydration of the hydrogels, which is critical to maintain visual acuity of ophthalmic devices.
Author(s)
Tummala, G.K.
Felde, N.
Gustafsson, S.
Bubholz, A.
Schröder, S.
Mihranyan, A.
Journal
Optical Materials Express  
Open Access
DOI
10.1364/OME.7.002824
Additional link
Full text
Language
English
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024