• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Anomaly Detection in Hot Forming Processes using Hybrid Modeling - Part II
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Anomaly Detection in Hot Forming Processes using Hybrid Modeling - Part II

Abstract
Hot forming is a widely used manufacturing process of crash-relevant structural components with complex geometries. In this paper a previously presented method of anomaly detection is further optimized allowing more data sources to be used in the outlier evaluation process. The method is based on a hybrid model consisting of a physical first-principles model of the hot forming press and a neural network in series. It allows a wide range of sensor data to be considered while keeping the anomaly detection process physically explainable.
Author(s)
Lenz, Cederic
Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM  
Hanke, Fabian
Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM  
Henke, Christian  
Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM  
Trächtler, Ansgar  
Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM  
Mainwork
ETFA 2022, 27th International Conference on Emerging Technologies and Factory Automation  
Conference
International Conference on Emerging Technologies and Factory Automation 2022  
DOI
10.1109/ETFA52439.2022.9921510
Language
English
Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM  
Keyword(s)
  • anomaly detection

  • hot forming

  • hybrid modeling

  • press hardening

  • quality control

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024