• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Robust Modeling of Machine Vibration Based on Control Loop Data for Predictive Maintenance
 
  • Details
  • Full
Options
June 15, 2024
Master Thesis
Title

Robust Modeling of Machine Vibration Based on Control Loop Data for Predictive Maintenance

Other Title
Robuste Modellierung von Maschinenvibrationen auf Basis von Regelkreisdaten für die Prädiktive Instandhaltung
Abstract
Predictive Maintenance is a crucial technique to reduce machine downtime. One challenge is the absence of labeled run-to-failure data. This thesis explores whether predicting a system’s physical response to external impulses can help detect anomalies, especially when only the machine’s normal behavior is known. For that, we show that the simple mass-spring-damper model explains most of the axis vibrations of an exemplary production machine. With this finding, we propose a semi-supervised anomaly detection approach, TCN-AD, which predicts a sensor signal based on parallel recorded signals. Our study reveals that the TCN-AD sensor signal prediction is quite accurate for normal data. The prediction error of TCN-AD serves as a score that is useful for identifying anomalies, as supported by our comparison with other anomaly detection algorithms. For one of the datasets that we looked at, we show that a simple FFT-based score gives similar results to the anomaly scores produced by LSTM-AD and our own TCN-AD. This similarity is reflected by the Pearson correlation coefficient, which is larger than 0.94 for all combinations of TCN-AD, LSTM-AD, and FFT-Score.
Thesis Note
München, TU, Master Thesis, 2024
Author(s)
Schilling, Raphael
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Advisor(s)
Rieger, Florian
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Trapp, Mario  
TU München, Lehrstuhl für Engineering robuster kognitiver Systeme
Open Access
File(s)
Download (2.23 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-3483
Language
English
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Keyword(s)
  • Condition Monitoring

  • Anomaly Detection

  • Time Series

  • Vibration Data

  • Control Loop Data

  • Machine Learning

  • TCN

  • LSTM

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024