• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Survey on English Entity Linking on Wikidata: Datasets and approaches
 
  • Details
  • Full
Options
January 27, 2022
Journal Article
Title

Survey on English Entity Linking on Wikidata: Datasets and approaches

Abstract
Wikidata is a frequently updated, community-driven, and multilingual knowledge graph. Hence, Wikidata is an attractive basis for Entity Linking, which is evident by the recent increase in published papers. This survey focuses on four subjects: (1) Which Wikidata Entity Linking datasets exist, how widely used are they and how are they constructed? (2) Do the characteristics of Wikidata matter for the design of Entity Linking datasets and if so, how? (3) How do current Entity Linking approaches exploit the specific characteristics of Wikidata? (4) Which Wikidata characteristics are unexploited by existing Entity Linking approaches? This survey reveals that current Wikidata-specific Entity Linking datasets do not differ in their annotation scheme from schemes for other knowledge graphs like DBpedia. Thus, the potential for multilingual and time-dependent datasets, naturally suited for Wikidata, is not lifted. Furthermore, we show that most Entity Linking approaches use Wikidata in the same way as any other knowledge graph missing the chance to leverage Wikidata-specific characteristics to increase quality. Almost all approaches employ specific properties like labels and sometimes descriptions but ignore characteristics such as the hyper-relational structure. Hence, there is still room for improvement, for example, by including hyper-relational graph embeddings or type information. Many approaches also include information from Wikipedia, which is easily combinable with Wikidata and provides valuable textual information, which Wikidata lacks.
Author(s)
Möller, Cedric
Universität Hamburg
Lehmann, Jens  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Usbeck, Ricardo
Universität Hamburg
Journal
Semantic web  
Project(s)
ML2R  
Aufbau einer führenden Sprachassistenzplattform "Made in Germany"  
Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization  
MLwin
ScaDS.AI
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Bundesministerium für Wirtschaft und Klimaschutz -BMWK-
European Commission  
Bundesministerium für Bildung und Forschung -BMBF-  
Bundesministerium für Bildung und Forschung -BMBF-  
Open Access
DOI
10.3233/SW-212865
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Entity Disambiguation

  • Entity Linking

  • Wikidata

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024