• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Learning-based Success Validation for Robotic Assembly Tasks
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Learning-based Success Validation for Robotic Assembly Tasks

Abstract
The use of reinforcement learning for efficient robot programming has proven significant potential in research. Particularly in combination with advanced simulations, even complex assembly processes including variation and tolerances can be trained with little effort. However, reliable information about the system's current success state is needed to reward promising actions for training the reinforcement learning agent. While this success information is readily available in simulation or traditionally retrieved with rule-based approaches, a solution approach to infer the success state from available observation data would highly increase the robustness of the reward information and the subsequent transfer to reality. In this paper, we present a deep learning approach to learn the success criteria using the assembly benchmark process of peg-in-hole.
Author(s)
Lämmle, Arik  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Goes, Marlies
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Tenbrock, Philipp G.  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
ETFA 2022, 27th International Conference on Emerging Technologies and Factory Automation  
Project(s)
Generierung robuster Steuerungs-Algorithmen für Roboter aus der Physiksimulation mittels Methoden der Künstlichen Intelligenz zur hochflexiblen, variantenreichen Montage in "Losgröße 1"  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Emerging Technologies and Factory Automation 2022  
DOI
10.1109/ETFA52439.2022.9921648
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • Assembly Automation

  • Simulation

  • Time Series Classification

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024