• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. A Comparative Study of Large Language Models for Named Entity Recognition in the Legal Domain
 
  • Details
  • Full
Options
December 15, 2024
Conference Paper
Title

A Comparative Study of Large Language Models for Named Entity Recognition in the Legal Domain

Abstract
Named Entity Recognition (NER) in the legal domain presents unique challenges due to specialized terminology and complex linguistic structures inherent in legal texts. While large language models (LLMs) like GPT-4, Llama-3, and others have significantly advanced natural language processing, their effectiveness in domain-specific tasks like legal Named Entity Recognition remains underexplored. This study conducts a comprehensive comparative analysis of eleven state-of-the-art LLMs on legal NER tasks across seven diverse datasets in five languages, namely English, Portuguese, German, Turkish, and Ukrainian. We evaluate the models' performance using F1 scores, focusing on their ability to accurately identify and classify legal entities. Our findings reveal significant variability in LLM performance across different languages and legal contexts, with proprietary models like GPT-4 achieving the highest overall scores. The results highlight the influence of model architecture, dataset characteristics, and prompt design on the effectiveness of legal NER tasks. This study provides valuable benchmarks for legal NER applications and offers insights into the strengths and limitations of current LLMs, guiding future research and development in legal natural language processing.
Author(s)
Deußer, Tobias  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Zhao, Cong
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sparrenberg, Lorenz
University of Bonn
Uedelhoven, Daniel  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Berger, Armin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pielka, Maren  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hillebrand, Lars Patrick  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE International Conference on Big Data 2024. Proceedings  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Big Data 2024  
File(s)
Download (190.02 KB)
Rights
Use according to copyright law
DOI
10.1109/BigData62323.2024.10825695
10.24406/publica-4193
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Named Entity Recognition

  • Large Language Models

  • Legal Domain

  • Natural Language Processing

  • Machine Learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024