• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Investigating the Performance and Suitability of Neural Network Architectures for Nonlinearity Mitigation of Optical Signals
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Investigating the Performance and Suitability of Neural Network Architectures for Nonlinearity Mitigation of Optical Signals

Abstract
We compare three different neural network architectures for nonlinearity mitigation of 32 GBd OOK and QPSK signals after transmission over a dispersion-compensated link of 10-km SSMF and 10km DCF. OSNR gains up to 2.2 dB were achieved using reservoir networks, suitable for fast training.
Author(s)
Dsilva, Vegenshanti Valerian
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Sackey, Isaac  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Ronniger, Gregor
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Hünefeld, Guillermo von
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Chacko, Binoy
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Schubert, Colja  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Freund, Ronald  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Mainwork
European Conference on Optical Communication, ECOC 2022  
Conference
European Conference on Optical Communication 2022  
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024