• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. A Review on Deep Learning Approaches for Spectral Imaging
 
  • Details
  • Full
Options
2022
Conference Paper
Title

A Review on Deep Learning Approaches for Spectral Imaging

Abstract
Deep learning algorithms have revolutionized the computer vision field in the last decade. They can reduce tedious feature engineering and have opened new possibilities of automated visual inspection. With deep learning techniques, the availability of large amounts of qualitative labeled data became more important than ever. The main share of computer vision research focuses on RGB images. With the advances in sensor technologies multi- and hyperspectral cameras have become more cost effective and accessible in recent years, allowing this imaging technology to be applied to new fields of application. This article gives an overview of approaches to apply deep learning techniques to multi- or hyperspectral data. Several state-of-the-art methods will be reviewed and problems and difficulties will be discussed. An overview of a selection of available datasets is presented. To give a broad and diverse insight, research from different fields of application are considered, namely the remote sensing domain, the agricultural domain and the food industry.
Author(s)
Fischer, Benedikt  orcid-logo
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory  
Conference
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation and Institute for Anthropomatics, Vision and Fusion Laboratory (Joint Workshop) 2021  
DOI
10.5445/IR/1000148325
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024