• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries
 
  • Details
  • Full
Options
2023
Journal Article
Title

Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries

Abstract
The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.
Author(s)
Sabaghi, Davood
TU Dresden  
Wang, Zhiyong
TU Dresden  
Bhauriyal, Preeti
TU Dresden  
Lu, Qiongqiong
Leibniz-Institut für Festkörper- und Werkstoffforschung, Dresden  
Morag, Ahiud
TU Dresden  
Mikhailovia, Daria
Leibniz-Institut für Festkörper- und Werkstoffforschung, Dresden  
Hashemi, Payam
TU Dresden  
Li, Dongqi
TU Dresden  
Neumann, Christof
Friedrich-Schiller-Universität Jena  
Liao, Zhongquan  
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Dominic, Anna Maria
TU Dresden  
Nia, Ali Shaygan
TU Dresden  
Dong, Renhao
TU Dresden  
Zschech, Ehrenfried
Warsaw University of Technology  
Turchanin, Andrey
Friedrich-Schiller-Universität Jena  
Heine, Thomas
TU Dresden  
Yu, Minghao
TU Dresden  
Feng, Xinliang
TU Dresden  
Journal
Nature Communications  
Project(s)
Graphene Flagship Core Project 3  
HYSUCAP
Funding(s)
H2020  
Funder
European Commission  
Sächsisches Staatsministerium für Wissenschaft und Kunst  
Open Access
DOI
10.1038/s41467-023-36384-5
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Keyword(s)
  • Batteries

  • Two-dimensional materials

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024