• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Dendritic catalysis in asymmetric synthesis
 
  • Details
  • Full
Options
2012
Journal Article
Title

Dendritic catalysis in asymmetric synthesis

Abstract
In this review, we have focused our attention on the application of dendrimers as asymmetric catalyst in organic synthesis, which appeared in the literature. Dendrimers have been identified as a promising candidate for catalysis application. The combination of high surface area and high solubility makes dendrimers as useful nanoscale catalysts. The main advantage of the dendritic catalysts is they can be separated from the reaction mixture by simple solvent precipitation and reused for several times with similar catalytic activity. Importance of catalytically active substances like metal salts or organic molecule like pyrrolidinylmethanol thatare attached either to the core or to the periphery of the dendrimers have been highlighted and their applications in important organic reactions such as Baylis-hillman, Mannich-type, Diels-Alder, Wittig reaction, Michael addition, addition of dialkylzinc to aldehyde, asymmetric epoxide ring opening, asymmetric hydrogenation and asymmetric epoxidation are also presented. Use of dendrimer based salts and chiral compounds in asymmetric syntheses are discussed and the advantages and disadvantages of those catalysts are brought out in this review.
Author(s)
John, A.
Nachtigall, F.M.
Santos, L.S.
Journal
Current organic chemistry  
Language
English
Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024