• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A meshfree generalized finite difference method for surface PDEs
 
  • Details
  • Full
Options
2019
Journal Article
Titel

A meshfree generalized finite difference method for surface PDEs

Abstract
In this paper, we propose a novel meshfree Generalized Finite Difference Method (GFDM)approach to discretize PDEs defined on manifolds. Derivative approximations for the same are done directly on the tangent space, in a manner that mimics the procedure followed in volume-based meshfree GFDMs. As a result, the proposed method not only does not require a mesh, it also does not require an explicit reconstruction of the manifold. In contrast to some existing methods, it avoids the complexities of dealing with a manifold metric, while also avoiding the need to solve a PDE in the embedding space. A major advantage of this method is that all developments in usual volume-based numerical methods can be directly ported over to surfaces using this framework. We propose discretizations of the surface gradient operator, the surface Laplacian and surface Diffusion operators. Possibilities to deal with anisotropic and discontinuous surface properties with large jumps are also introduced, and a few practical applications are presented.
Author(s)
Suchde, P.
Kuhnert, J.
Zeitschrift
Computers and mathematics with applications
Thumbnail Image
DOI
10.1016/j.camwa.2019.04.030
Language
English
google-scholar
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022