• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Synthetic image rendering solves annotation problem in deep learning nanoparticle segmentation
 
  • Details
  • Full
Options
2021
Journal Article
Titel

Synthetic image rendering solves annotation problem in deep learning nanoparticle segmentation

Abstract
Nanoparticles occur in various environments as a consequence of man-made processes, which raises concerns about their impact on the environment and human health. To allow for proper risk assessment, a precise and statistically relevant analysis of particle characteristics (such as size, shape, and composition) is required that would greatly benefit from automated image analysis procedures. While deep learning shows impressive results in object detection tasks, its applicability is limited by the amount of representative, experimentally collected and manually annotated training data. Here, an elegant, flexible, and versatile method to bypass this costly and tedious data acquisition process is presented. It shows that using a rendering software allows to generate realistic, synthetic training data to train a state-of-the art deep neural network. Using this approach, a segmentation accuracy can be derived that is comparable to man-made annotations for toxicologically relevant metal-oxide nanoparticle ensembles which were chosen as examples. The presented study paves the way toward the use of deep learning for automated, high-throughput particle detection in a variety of imaging techniques such as in microscopies and spectroscopies, for a wide range of applications, including the detection of micro- and nanoplastic particles in water and tissue samples.
Author(s)
Mill, Leonid
Friedrich-Alexander-Universität Erlangen-Nürnberg
Wolff, David
Innovations-Institut für Nanotechnologie und korrelative Mikroskopie
Gerrits, Nele
Flemish Institute for Technological Research
Philipp, Patrick
Luxembourg Institute of Science and Technology
Kling, Lasse
Innovations-Institut für Nanotechnologie und korrelative Mikroskopie
Vollnhals, Florian
Innovations-Institut für Nanotechnologie und korrelative Mikroskopie / Friedrich-Alexander-Universität Erlangen-Nürnberg
Ignatenko, Andrew
Luxembourg Institute of Science and Technology
Jaremenko, Christian
Innovations-Institut für Nanotechnologie und korrelative Mikroskopie / Friedrich-Alexander-Universität Erlangen-Nürnberg
Huang, Yixing
Innovations-Institut für Nanotechnologie und korrelative Mikroskopie / Friedrich-Alexander-Universität Erlangen-Nürnberg
De Castro, Olivier
Luxembourg Institute of Science and Technology
Audinot, Jean-Nicolas
Luxembourg Institute of Science and Technology
Nelissen, Inge
Flemish Institute for Technological Research
Wirtz, Tom
Luxembourg Institute of Science and Technology
Maier, Andreas
Friedrich-Alexander-Universität Erlangen-Nürnberg
Christiansen, Silke
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Zeitschrift
Small methods
Project(s)
npSCOPE
Funder
European Commission EC
Thumbnail Image
DOI
10.1002/smtd.202100223
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Tags
  • helium ion microscopy

  • toxicology

  • segmentation

  • nanoparticles

  • machine learning

  • image analysis

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022