• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Segmentation-Based Near-Lossless Compression of Multi-View Cultural Heritage Image Data
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Segmentation-Based Near-Lossless Compression of Multi-View Cultural Heritage Image Data

Abstract
Cultural heritage preservation using photometric approaches received increasing significance in the past years. Capturing of these datasets is usually done with high-end cameras at maximum image resolution enabling high quality reconstruction results while leading to immense storage consumptions. In order to maintain archives of these datasets, compression is mandatory for storing them at reasonable cost. In this paper, we make use of the mostly static background of the capturing environment that does not directly contribute information to 3d reconstruction algorithms and therefore may be approximated using lossy techniques. We use a superpixel and figure-ground segmentation based near-lossless image compression algorithm that transparently decides if regions are relevant for later photometric reconstructions. This makes sure that the actual artifact or structured background parts are compressed with lossless techniques. Our algorithm achieves compression rates compared to the PNG image compression standard ranging from 1:2 to 1:4 depending on the artifact size.
Author(s)
Buelow, Max von
TU Darmstadt GRIS
Tausch, Reimar  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Knauthe, Volker
TU Darmstadt GRIS
Wirth, Tristan
TU Darmstadt GRIS
Guthe, Stefan  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Santos, Pedro
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fellner, Dieter W.
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
GCH 2020, Eurographics Workshop on Graphics and Cultural Heritage  
Funder
Deutsche Forschungsgemeinschaft DFG  
Conference
Workshop on Graphics and Cultural Heritage (GCH) 2020  
DOI
10.2312/gch.20201294
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • image compression

  • cultural heritage

  • Lead Topic: Digitized Work

  • Research Line: Computer graphics (CG)

  • Research Line: Computer vision (CV)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024