Now showing 1 - 4 of 4
  • Publication
    Decoupling Autoencoders for Robust One-vs-Rest Classification
    One-vs-Rest (OVR) classification aims to distinguish a single class of interest from other classes. The concept of novelty detection and robustness to dataset shift becomes crucial in OVR when the scope of the rest class extends from the classes observed during training to unseen and possibly unrelated classes. In this work, we propose a novel architecture, namely Decoupling Autoencoder (DAE) to tackle the common issue of robustness w.r.t. out-of-distribution samples which is prevalent in classifiers such as multi-layer perceptrons (MLP) and ensemble architectures. Experiments on plain classification, outlier detection, and dataset shift tasks show DAE to achieve robust performance across these tasks compared to the baselines, which tend to fail completely, when exposed to dataset shift. W hile DAE and the baselines yield rather uncalibrated predictions on the outlier detection and dataset shift task, we found that DAE calibration is more stable across all tasks. Therefore, calibration measures applied to the classification task could also improve the calibration of the outlier detection and dataset shift scenarios for DAE.
  • Publication
    Utilizing Representation Learning for Robust Text Classification Under Datasetshift
    Within One-vs-Rest (OVR) classification, a classifier differentiates a single class of interest (COI) from the rest, i.e. any other class. By extending the scope of the rest class to corruptions (dataset shift), aspects of outlier detection gain relevancy. In this work, we show that adversarially trained autoencoders (ATA) representative of autoencoder-based outlier detection methods, yield tremendous robustness improvements over traditional neural network methods such as multi-layer perceptrons (MLP) and common ensemble methods, while maintaining a competitive classification performance. In contrast, our results also reveal that deep learning methods solely optimized for classification, tend to fail completely when exposed to dataset shift.
  • Publication
    Automatic Indexing of Financial Documents via Information Extraction
    ( 2021) ; ;
    Bell , Thiago
    ;
    Gebauer, Michael
    ;
    Ulusay, Bilge
    ;
    Uedelhoven, Daniel
    ;
    Dilmaghani, Tim
    ;
    Loitz, Rüdiger
    ;
    ; ;
    The problem of extracting information from large volumes of unstructured documents is pervasive in the domain of financial business. Enterprises and investors need automatic methods that can extract information from these documents, particularly for indexing and efficiently retrieving information. To this end, we present a scalable end-to-end document processing system for indexing and information retrieval from large volumes of financial documents. While we show our system works for the use case of financial document processing, the entire system itself is agnostic of the document type and machine learning model type. Thus, it can be applied to any large-scale document processing task involving domain-specific extractors.
  • Publication
    Toxicity Detection in Online Comments with Limited Data: A Comparative Analysis
    We present a comparative study on toxicity detection, focusing on the problem of identifying toxicity types of low prevalence and possibly even unobserved at training time. For this purpose, we train our models on a dataset that contains only a weak type of toxicity, and test whether they are able to generalize to more severe toxicity types. We find that representation learning and ensembling exceed the classification performance of simple classifiers on toxicity detection, while also providing significantly better generalization and robustness. All models benefit from a larger training set size, which even extends to the toxicity types unseen during training.