Now showing 1 - 3 of 3
  • Publication
    Assessing the Environmental and Economic Impact of Wire Arc Additive Manufacturing
    Additive Manufacturing (AM) has continuously been integrated in the modern production landscape and complements traditional manufacturing processes by allowing the creation of complex three-dimensional objects through layer-by-layer material deposition. Especially with new design opportunities and short lead times it has significant impact on different industrial sectors such as healthcare, automotive and aerospace. Compared to other AM technologies, Wire Arc Additive Manufacturing (WAAM) has a particularly high material deposition rate and a high degree of flexibility when building large components. Therefore, WAAM has great potential for efficient and resilient production. To quantify this potential the environmental and economic impact must be assessed. The presented study focuses Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) and presents a general methodology for impact analysis as well as a transfer to WAAM. The methodology consists of four steps in accordance with ISO 14044:2006: goal and scope definition, inventory analysis (environmental/economic), environmental impact assessment/cost aggregation, interpretation. For the transfer to WAAM a cradle-to-gate analysis is conducted. The relevant process chain leads from alloy production to the WAAM product manufacturing. The methodology generates relative data, so the final assessment of WAAM must be set into context with alternative processes.
  • Publication
    Tailored melt pool shape by dual laser beam LMD-w process
    Additive Manufacturing (AM) is a fast growing manufacturing market. Laser Metal Deposition (LMD) is a high deposition rate metal AM process mostly used for repair, cladding or manufacturing applications. The two commonly used LMD-processes are powder-based (LMD-p) and wire-based (LMD-w). While LMD-p offers high deposition rates up to 2 kg/h (compared to LMD-w with 1kg/h) the handling of powder in terms of health and safety as well as machine wear become important. Furthermore, the material efficiency (due to overspray) is lower compared to the LMD-w AM-process. This is where LMD-w offers advantages, but advanced concepts to improve the stability of the LMD-w process to the level of LMD-p are needed. In this presentation, an approach is investigated to stabilize the LMD-w process by combining continuous wave (cw) laser and low-power pulsed wave (pw) laser. Calorimeter-like absorption measurements as well as deposition experiments are carried out to understand the physical background of the dual laser process and how this setup helps to stabilize the process. Promising results were achieved showing the possibility to tailor the melt pool height and width by a factor of 1.5-2 and an increase of energy absorption by 20%. This leads to a new perspective for the LMD-w manufacturing process (3D part build up, cladding and repair) in many industry sectors such as mobility, energy and engineering.
  • Publication
    Tailored melt pool shape and temperature distribution by a dual laser beam LMD-w process
    Laser Metal Deposition (LMD) is a high deposition rate metal AM process used for repair, cladding or manufacturing. While wire-based LMD (LMD-w) offers several advantages such as high material efficiency and a safe and simple handling of the wire feedstock, advanced concepts are needed to increase the LMD-w process stability. In this presentation, an approach is investigated to stabilize the LMD-w process by combining a continuous wave (cw) laser and a low-power pulsed wave (pw) laser. Calorimeter-like absorption measurements as well as deposition experiments are carried out to understand the physical background of the dual laser process and how this setup helps to stabilize the process. Promising results were achieved showing the possibility to tailor the melt pool height and width by a factor of 1.5-2 and an increase of energy absorption by 20 %. This offers new perspectives for the LMD-w manufacturing process in many industry sectors.