Now showing 1 - 7 of 7
  • Publication
    On the effects of biased quantum random numbers on the initialization of artificial neural networks
    Recent advances in practical quantum computing have led to a variety of cloud-based quantum computing platforms that allow researchers to evaluate their algorithms on noisy intermediate-scale quantum devices. A common property of quantum computers is that they can exhibit instances of true randomness as opposed to pseudo-randomness obtained from classical systems. Investigating the effects of such true quantum randomness in the context of machine learning is appealing, and recent results vaguely suggest that benefits can indeed be achieved from the use of quantum random numbers. To shed some more light on this topic, we empirically study the effects of hardware-biased quantum random numbers on the initialization of artificial neural network weights in numerical experiments. We find no statistically significant difference in comparison with unbiased quantum random numbers as well as biased and unbiased random numbers from a classical pseudo-random number generator. The quantum random numbers for our experiments are obtained from real quantum hardware.
  • Publication
    Feature selection on quantum computers
    ( 2023-02-20)
    Mücke, Sascha
    ;
    ;
    Müller, Sabine
    ;
    ;
    In machine learning, fewer features reduce model complexity. Carefully assessing the influence of each input feature on the model quality is therefore a crucial preprocessing step. We propose a novel feature selection algorithm based on a quadratic unconstrained binary optimization (QUBO) problem, which allows to select a specified number of features based on their importance and redundancy. In contrast to iterative or greedy methods, our direct approach yields higher-quality solutions. QUBO problems are particularly interesting because they can be solved on quantum hardware. To evaluate our proposed algorithm, we conduct a series of numerical experiments using a classical computer, a quantum gate computer, and a quantum annealer. Our evaluation compares our method to a range of standard methods on various benchmark data sets. We observe competitive performance.
  • Publication
    Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems
    Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
  • Publication
    A hybrid approach unveils drug repurposing candidates targeting an Alzheimer pathophysiology mechanism
    ( 2022)
    Lage-Rupprecht, Vanessa
    ;
    ;
    Dick, Justus
    ;
    ; ;
    Gebel, Stephan
    ;
    Pless, Ole
    ;
    Reinshagen, Jeanette
    ;
    ; ; ; ; ;
    The high number of failed pre-clinical and clinical studies for compounds targeting Alzheimer disease (AD) has demonstrated that there is a need to reassess existing strategies. Here, we pursue a holistic, mechanism-centric drug repurposing approach combining computational analytics and experimental screening data. Based on this integrative workflow, we identified 77 druggable modifiers of tau phosphorylation (pTau). One of the upstream modulators of pTau, HDAC6, was screened with 5,632 drugs in a tau-specific assay, resulting in the identification of 20 repurposing candidates. Four compounds and their known targets were found to have a link to AD-specific genes. Our approach can be applied to a variety of AD-associated pathophysiological mechanisms to identify more repurposing candidates.
  • Publication
    CLEP: A hybrid data- and knowledge-driven framework for generating patient representations
    ( 2021-05-08) ;
    Ali, Mehdi
    ;
    ; ; ; ;
    Hoyt, Charles Tapley
    ;
    Domingo-Fernández, Daniel
    As machine learning and artificial intelligence increasingly attain a larger number of applications in the biomedical domain, at their core, their utility depends on the data used to train them. Due to the complexity and high dimensionality of biomedical data, there is a need for approaches that combine prior knowledge around known biological interactions with patient data. Here, we present CLinical Embedding of Patients (CLEP), a novel approach that generates new patient representations by leveraging both prior knowledge and patient-level data. First, given a patient-level dataset and a knowledge graph containing relations across features that can be mapped to the dataset, CLEP incorporates patients into the knowledge graph as new nodes connected to their most characteristic features. Next, CLEP employs knowledge graph embedding models to generate new patient representations that can ultimately be used for a variety of downstream tasks, ranging from clustering to classification. We demonstrate how using new patient representations generated by CLEP significantly improves performance in classifying between patients and healthy controls for a variety of machine learning models, as compared to the use of the original transcriptomics data. Furthermore, we also show how incorporating patients into a knowledge graph can foster the interpretation and identification of biological features characteristic of a specific disease or patient subgroup. Finally, we released CLEP as an open source Python package together with examples and documentation.
  • Publication
    Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions
    In this paper, we describe the combination of machine learning and simulation towards a hybrid modelling approach. Such a combination of data-based and knowledge-based modelling is motivated by applications that are partly based on causal relationships, while other effects result from hidden dependencies that are represented in huge amounts of data. Our aim is to bridge the knowledge gap between the two individual communities from machine learning and simulation to promote the development of hybrid systems. We present a conceptual framework that helps to identify potential combined approaches and employ it to give a structured overview of different types of combinations using exemplary approaches of simulation-assisted machine learning and machine-learning assisted simulation. We also discuss an advanced pairing in the context of Industry 4.0 where we see particular further potential for hybrid systems. In this paper, we describe the combination of machine learning and simulation towards a hybrid modelling approach. Such a combination of data-based and knowledge-based modelling is motivated by applications that are partly based on causal relationships, while other effects result from hidden dependencies that are represented in huge amounts of data. Our aim is to bridge the knowledge gap between the two individual communities from machine learning and simulation to promote the development of hybrid systems. We present a conceptual framework that helps to identify potential combined approaches and employ it to give a structured overview of different types of combinations using exemplary approaches of simulation-assisted machine learning and machine-learning assisted simulation. We also discuss an advanced pairing in the context of Industry 4.0 where we see particular further potential for hybrid systems.
  • Publication
    Predicting Missing Links Using PyKEEN
    ( 2019) ;
    Hoyt, Charles Tapley
    ;
    Domingo-Fernandez, Daniel
    ;
    PyKEEN is a framework, which integrates several approaches to compute knowledge graph embeddings (KGEs). We demonstrate the usage of PyKEEN in an biomedical use case, i.e. we trained and evaluated several KGE models on a biological knowledge graph containing genes annotations to pathways and pathway hierarchies from well-known databases. We used the best performing model to predict new links and present an evaluation in collaboration with a domain expert.