Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Embedding electronics into additive manufactured components using laser metal deposition and selective laser melting

2018 , Petrat, Torsten , Kersting, Robert , Graf, Benjamin , Rethmeier, Michael

The paper deals with the integration of a light emitting diode (LED) into an additive manufactured metal component. Selective laser melting (SLM) and laser metal deposition (LMD) are used. The material used is the chrome-nickel steel 316L. The basic component is manufactured by means of SLM and consists of a solid body and an area with grid structure. The solid body includes a duct in the shape of a groove with a recess for the positioning of the power cable. The LED is embedded in the grid structure via an inlet from the solid body. In further processing, the groove is filled with LMD. Two strategies with different parameter combinations were investigated. It shows that a high energy input near the power cable leads to its destruction. By using multiple parameter combinations during the manufacturing process, this destruction can be prevented. There was a comparison of both strategies with regard to the necessary number of tracks and duration of welding time.

No Thumbnail Available
Publication

Laser-plasma-cladding as a hybrid metal deposition-technology applying a SLM-produced copper plasma nozzle

2018 , Brunner-Schwer, Christian , Kersting, Robert , Graf, Benjamin , Rethmeier, Michael

Laser-Metal-Deposition (LMD) and Plasma-Transferred-Arc (PTA) are well known technologies which can be used for cladding purposes. The prime objective in combining LMD and PTA as a Hybrid Metal Deposition-Technology (HMD) is to achieve high deposition rates at low thermal impact. Possible applications are coatings for wear protection or repair welding for components made of steel. The two energy sources (laser and plasma arc) build a joint process zone and are configurated to constitute a stable process at laser powers between 0.4-1 kW (defocused) and plasma currents between 75-200 A. Stainless steel 316L serves as filler material. For this HMD process, a plasma Cu-nozzle is designed and produced by powder bed based Selective Laser Melting. The potential of the HMD technology is investigated and discussed considering existing processes. This paper demonstrates how the interaction of the two energy sources effects the following application-relevant properties: deposition rate, powder efficiency and energy input.