Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Künstliche Neuronale Netze zur Qualitätsprognose von Funktional Gradierten Materialien im laserbasierten Directed Energy Deposition

2023-09-25 , Marquardt, Raphael , Bähring, Stefan , Biegler, Max , Rethmeier, Michael

Durch pulverbasiertes Directed-Energy Deposition lassen sich Gradierungen fertigen, um diskrete Materialübergänge zu vermeiden und die Lebensdauer von Hartschichten zu erhöhen. Die Kombination aus Stahl als Basiswerkstoff und einer verschleiß- und korrosionsbeständigen Co-Cr Legierung verspricht durch Vermeiden von Spannungskonzentrationen das Verhindern von Abplatzungen und Rissen in der Schutzschicht. Um die Qualität des gefertigten Bauteils zu beurteilen, liegen für solche Funktional Gradierten Materialien (FGM) wenig Erkenntnisse vor. Daher wird im Rahmen dieser Studie eine Methodik erarbeitet, um die relative Dichte eines Funktional Gradierten Materials auf Stahl und Co-Cr Basis mittels Maschinendaten zu bestimmen. Anschließend wird unter Einsatz eines künstlichen neuronalen Netzes anhand von Sensordaten die relative Dichte vorhergesagt. Das trainierte Netz erreicht eine Vorhersagegenauigkeiten von 99,83%. Abschließend wird eine Anwendung anhand von einem Demonstrator gezeigt.

No Thumbnail Available
Publication

Result quality evaluation of Directed Energy Deposition Additive Manufacturing simulations with progressive simplification of transient heat-source motion

2022-09-05 , Biegler, Max , Elsner, Beatrix A.M. , Neubauer, Ingo , Lemke, Josefine , Rethmeier, Michael

Directed Energy Deposition (DED) additive manufacturing has recently been adopted in the industry for the build-up of structural components with weld lengths up to kilometers. As with all welding processes, DED suffers from thermal distortion, causing loss of dimensional accuracy and risk of cracking. Currently, process optimization with objective to minimize distortion requires expensive experimental trial-and-error. With numerical simulation of the DED process, this distortion compensation can be performed virtually, significantly reducing experimental trials. Although such approaches are generally available, their widespread adoption is currently being hampered by long computational times for large builds. This work presents a novel approach to reduce the calculation time by a simplification of the transient heat-source motion. This approach is assessed in terms of result accuracy for an industrial-scale component by progressively reducing the resolution of the heat-source motion. Calculation times as well as distortions in comparison to experimental trials are investigated.