Now showing 1 - 10 of 14
  • Publication
    Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition
    ( 2021) ;
    Marko, Angelina
    ;
    Kruse, Tobias
    ;
    ;
    Additive manufacturing promises a high potential for the maritime sector. Directed Energy Deposition (DED) in particular offers the opportunity to produce large-volume maritime components like propeller hubs or blades without the need of a costly casting process. The post processing of such components usually generates a large amount of aluminum bronze grinding waste. The aim of the presented project is to develop a sustainable circular AM process chain for maritime components by recycling aluminum bronze grinding waste to be used as raw material to manufacture ship propellers with a laser-powder DED process. In the present paper, grinding waste is investigated using a dynamic image analysis system and compared to commercial DED powder. To be able to compare the material quality and to verify DED process parameters, semi-academic sample geometries are manufactured.
  • Publication
    Validierung von Methoden zur Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen (IGF 21483 BG / P 1488)
    ( 2021)
    Meyerdierks, Martin
    ;
    Schreiber, Vincent
    ;
    Böhne, Christoph
    ;
    ;
    Jüttner, Sven
    ;
    Meschut, Gerson
    ;
    Ziel des Forschungsprojekts ist es, eine Korrelation zwischen Gleeble-Heißzug-Prüfverfahren und Widerstandspunktschweiß-basierten Prüfverfahren herzustellen. Es soll die Effektivität von Methoden zu Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen bewertet werden. Weiterhin soll Kenntnis über Auswirkungen von LME Rissen auf das Tragverhalten von realitätsnahen Prinzipbauteilen gewonnen werden.
  • Publication
    Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries
    ( 2020) ;
    Wang, Jiahan
    ;
    Kaiser, Lukas
    ;
    In additive manufacturing (AM) directed energy deposition (DED), parts are built by welding layers of powder or wire feedstock onto a substrate with applications for steel powders in the fields of forging tools, spare parts, and structural components for various industries. For large and bulky parts, the choice of tool-paths influences the build rate, the mechanical performance, and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool-path generation is essential for the usability of DED processes. This contribution presents automated tool-path generation approaches and discusses the results for arbitrary geometries. So-called “zig-zag” and “contour-parallel” processing strategies are investigated and the tool-paths are automatically formatted into machine-readable g-code for experimental validation to build sample geometries. The results are discussed in regard to volume-fill, microstructure, and porosity in dependence of the path planning according to photographs and metallographic cross-sections.
  • Publication
    Avoidance of End Crater Imperfections at High-Power Laser Beam Welding of Closed Circumferential Welds
    The present work deals with the development of a strategy for the prevention of end crater defects in high-power laser welding of thick-walled circumferential welds. A series of experiments were performed to understand the influence of the welding parameters on the formation of the imperfections such as pores, cracks, excessive root-side drop-through and shrinkage cavities in the overlap area. An abrupt switch-out of the laser power while closing the circumferential weld leads to a formation of a hole which passes through the whole welded material thickness. A laser power ramp causes solidification cracks which are initiated on the transition from full-penetration mode to partial penetration. Strategies with a reduction of the welding speed shows a creation of inadmissible root sagging. Defocusing the laser beam led to promising results in terms of avoiding end crater imperfections. Cracks and pores could be effectively avoided by using defocusing techniques. A strategy for avoiding of end crater defects was tested on flat specimens of steel grade S355J2 with a wall thickness of 10 mm and then transferred on the 9.5 mm thick pipe sections made of high-strength steel X100Q.
  • Publication
    Automated tool-path generation for rapid manufacturing and numerical simulation of additive manufacturing LMD geometries
    ( 2019) ;
    Wang, Jiahan
    ;
    Graf, Benjamin
    ;
    In additive manufacturing (AM) Laser Metal Deposition (LMD), parts are built by welding layers of powder feedstock onto a substrate. Applications for steel powders include forging tools and structural components for various industries. For large parts, the choice of tool-paths influences the build-rate, the part performance and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool path generation is essential for the usability of LMD processes. In this contribution, automated tool-path generation approaches are shown and their results are discussed for arbitrary geometries. The investigated path strategies are the classical approaches: ""Zig-zag-"" and ""contour-parallel-strategies"". After generation, the tool-paths are automatically formatted into g-code for experimental build-up and ASCII for a numerical simulation model. Finally, the tool paths are discussed in regards to volume-fill, microstructure and porosity for the experimental samples. This work presents a part of the IGF project 18737N ""Welding distortion simulation"" (FOSTA P1140)
  • Publication
    Embedding electronics into additive manufactured components using laser metal deposition and selective laser melting
    ( 2018)
    Petrat, Torsten
    ;
    Kersting, Robert
    ;
    Graf, Benjamin
    ;
    The paper deals with the integration of a light emitting diode (LED) into an additive manufactured metal component. Selective laser melting (SLM) and laser metal deposition (LMD) are used. The material used is the chrome-nickel steel 316L. The basic component is manufactured by means of SLM and consists of a solid body and an area with grid structure. The solid body includes a duct in the shape of a groove with a recess for the positioning of the power cable. The LED is embedded in the grid structure via an inlet from the solid body. In further processing, the groove is filled with LMD. Two strategies with different parameter combinations were investigated. It shows that a high energy input near the power cable leads to its destruction. By using multiple parameter combinations during the manufacturing process, this destruction can be prevented. There was a comparison of both strategies with regard to the necessary number of tracks and duration of welding time.
  • Publication
    Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up
    ( 2018) ;
    Graf, Benjamin
    ;
    Due to rapid, localized heating and cooling, distortions accumulate in additive manufactured laser metal deposition (LMD) components, leading to a loss of dimensional accuracy or even cracking. Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments. To assess the viability of the simulation tool for the use in a predictive manner, comprehensive validations with experimental results on the newly-built part need to be conducted. In this contribution, a predictive, mechanical simulation of a thin-walled, curved LMD geometry is shown for a 30-layer sample of 1.4404 stainless steel. The part distortions are determined experimentally via an in-situ digital image correlation measurement using the GOM Aramis system and compared with the simulation results. With this benchmark, the performance of a numerical welding simulation in additive manufacturing is discussed in terms of result accuracy and usability.
  • Publication
    Prognose der Oberflächenbeschaffenheit für die additive Fertigung mittels Laser-Pulver-Auftragschweißen
    ( 2018)
    Marko, Angelina
    ;
    Petrat, Torsten
    ;
    Graf, Benjamin
    ;
    In den letzten Jahren hat vor allem die Nachfrage nach additiven Fertigungstechnologien und Reparaturverfahren für hochfeste Werkstoffe einen starken Aufschwung erlebt. Ein Verfahren, welches sich neben der Herstellung von Beschichtungen besonders für diese Anwendungen eignet, ist das Laser-Pulver-Auftragschweißen. Es wird besonders für Reparaturen bzw. zur Herstellung von teuren Bauteilen, wie Werkzeugen oder Turbinenteilen, eingesetzt. Da diese Teile oft großen mechanischen sowie thermischen Belastungen ausgesetzt sind, ist es besonders wichtig, dass die erzeugte Struktur eine hohe Qualität aufweist. In dieser Arbeit wird die statistische Versuchsplanung genutzt, um Modelle für die Oberflächenbeschaffenheiten von Inconel 718 zu generieren. Als Grundlage dient hierbei ein zentral zusammengesetzter Versuchsplan mit großem Parameterfenster. So wird die Leistung zwischen 550 Watt und 1950 Watt, der Vorschub von 530 mm/min bis 920 mm/min, der Pulvermassenstrom von 3 g/min bis 12 g/min sowie der Spotdurchmesser von 1 mm bis 2 mm variiert. Auf diese Weise wird die Spurgeometrie beeinflusst. Darüber hinaus wird das Überlappungsverhältnis zwischen 20% bis 50 % verändert. Die Auswertung der Oberflächenbeschaffenheit erfolgt mit dem auf der Fokusvariation basierendem Oberflächenmessgerät Alicona Infinite- Focus. Dieses Verfahren der 3D Mikrokoordinatenmesstechnik gewährleistet eine zuverlässige Auswertung der Spurgeometrie, der Welligkeit sowie die Messung der mittleren arithmetischen Höhe Sa zur Bestimmung der Oberflächenrauheit. Anschließend werden die generierten Modelle verifiziert. Ziel dabei ist es, kostenintensive Vorversuche in Zukunft einzusparen. Darüber hinaus wird das Prozessverständnis erweitert und signifikante Einflussfaktoren identifiziert.
  • Publication
    Hybrid laser arc welding of 25 mm thick materials using electromagnetic weld pool support
    ( 2018)
    Üstündag, Ömer
    ;
    Avilov, Vjaceslav
    ;
    ;
    In addition to the many advantages of deep penetration, increased welding speed and a low sensitivity to manufacturing tolerances such as gap and edge offset, the hybrid laser arc welding process is used increasingly in industrial applications such as shipbuilding or pipeline manufacturing. Nonetheless, thick-walled sheets with a wall thickness of 20 mm or more are still multi-pass welded using the arc welding process, due to increased process instability by increasing laser power. Welding at reduced speed, especially in a flat position, leads to an irregular formation of the root part such as dropping. The hydrostatic pressure exceeds the surface tension, which decreases with increasing seam width. In order to prevent gravity drop-outs, the use of a melt pool support is necessary. Usual weld pool supports such as ceramic or powder supports require time-consuming mechanical detachment. The electromagnetic weld pool support system, which is described in this study, operates without contact and based on generating Lorentz forces in the weld pool. An externally applied oscillating magnetic field induces eddy currents and generates an upward directed Lorentz force, which counteracts the hydrostatic pressure. This allows single-pass welds up to 25 mm by hybrid laser arc welding process with a 20-kW fibre laser. Moreover, it is favoured by the diminished welding speed the cooling rate which leads to an improvement of the mechanical-technological properties of the seams - the lower formation of martensite in the microstructure enables better Charpy impact toughness. The electromagnetic weld pool support extends the limitation of the laser hybrid welding process in the thick sheet area. By adapting the electromagnetic weld pool support to the laser and laser hybrid welding process, the application potential of these technologies for industrial implementation can be drastically increased.