Now showing 1 - 10 of 150
  • Publication
    Time-Sensitive Networking over Metropolitan Area Networks for Remote Industrial Control
    ( 2021)
    Tschöke, Simon
    ;
    ; ; ;
    Willner, Alexander
    ;
    ;
    Chemnitz, Moritz
    The benefits of the currently evolving IEEE Time-Sensitive Networking (TSN) standard have already been globally recognized. Whereas the application of TSN in a LAN is currently widely and globally tested, TSN in a Metropolitan Area Network (MAN) has not been a major focus until now. The possible benefits of utilizing co-located Edge Clouds in order to support multiple urban production sites with industrial realtime applications open a wide range of new business models. Therefore, we have analyzed the feasibility of transparently using PROFINET over TSN via a Dense Wavelength Division Multiplex (DWDM) link, where a machine park is controlled remotely by an Edge-based virtual Programmable Logic Controller (vPLC). As a result, we are able to setup a TSN connection over a MAN with a one-way delay of about 156.5 J.ms and a jitter of about 12 ns. This work can be extended to allow for dynamically provisioned TSN flows and multi-path Frame Replication and Elimination (FRER) for distributed hard real-time machine control and adoption to Ultra-Reliable Low-Latency Communication (URLLC) 5G campus networks.
  • Publication
    Production environment of tomorrow (ProMo)
    Small defects in the grain or major damage to a moulded part or tool can bring production to a standstill. SMEs in particular have neither the personnel nor the equipment to repair such damage on their own, so they send it to specialised contractors. The repair process is carried out manually, depending on the accuracy requirements, and is usually completed by a finishing process. This work requires qualified personnel and, at the same time, requires a lot of time in case of larger damages. In this paper we present a way to map the Maintenance, Repair and Operations (MRO) process chain in a partially automated manner. The symbiosis of individual technologies results in a significantly increased efficiency of the MRO process chain, which continues to focus on people and their process knowledge. While Directed Energy Deposition (DED) for the MRO of moulded parts is used widely, usually a high manual effort in measuring the component geometries and teaching of the machine tool paths is necessary. However, there are clear advantages compared to the manufacture of new parts or manual laser welding repair. At the same time, the resource and energy requirements can often be significantly reduced compared to new part production. ProMo focuses on automating the time-consuming machine programming by reducing the number of necessary work steps in CAD/CAM-based program creation. Based on a subsequent robot-guided scan, a digital actual 3D model is generated. Due to intelligent path planning algorithms, no manual programming of the robot is necessary and at the same time it is possible to detect components of different sizes, shapes and covers in this system with a minimum of effort. In addition, the operator passes on elementary information, such as the approach path of the milling head, to the subsequent processes by means of finger gestures and can thus significantly reduce tedious CAM programming steps. Now, the scanned component is transferred to a 3D-CAD model and a target/actual comparison is created for the damaged areas. Those are milled out in a defined manner and then restored using DED.
  • Publication
    Towards a Framework for Impact Assessment of Research & Technology Organisations
    Due to their ability to bridge the gap between knowledge created by basic research and market requirements, Research and Technology Organisations (RTOs) play a major role in countriesâ innovation systems. Their R&D results should lead to innovations, which in turn generate the economic output of public investment in research and development. Moreover, they should support the foundation of new companies and industrial innovations. RTOs can thus be seen as intermediaries between R&D and the industry, while they themselves constitute to a certain extent entrepreneurs and actors in applied R&D that focus on industrial and commercial application right from the start of their activities. Therewith, RTOs pursue to increase the competitiveness of the entire economy. With a growing demand for evaluating their actual contribution in national innovation systems, simply stating the goal of positive impact to stakeholders like governments, the public, investors etc. is not enough; its accomplishment needs to be proven by robust evidence. In this regard, the value of an impact assessment is determined by the strength of the evidence produced and the credibility of the evaluation. RTOâs research activities and their impacts are diverse in nature and occur across many sectors of the economy. To gain transparent insights into relevant and comprehensive performance metrics showing the impact of RTOs from a micro- and macroeconomic perspective, impacts are only appropriate for evaluation if a causal relationship can be drawn back to their origin. While some impacts are primarily economic and suitable for quantitative analysis, others have to be evaluated qualitatively. Regardless of its type, each impact needs to be assessed within a common framework to enable a comprehensive understanding of RTO's impact. Within this contribution, an impact assessment framework is established with the aim to enable the identification of causal relationships between impacts and their origin.
  • Publication
    Simulating flow behaviour of wet particles within the immersed tumbling process
    For many production chains, it is mandatory to involve special finishing of the manufactured parts for the chipping of the edges as well as the polishing of surfaces. One commonly used method is the immersed tumbling process, where any workpiece is dragged through a particle filled container. In many cases, the immersed tumbling process operates in environments with added liquids, leading to changes in particle-tool interaction and general flow behaviour of the used particles. Whilst the discrete element method for simulating particles is mainly limited to dry particles, the used software ROCKY DEM from ESSS, Florianópolis, Brasil, comes with a built-in liquid-bridge model to simulate water-covered particles and granulate and furthermore an extension for system couplings with Ansys Fluent of the company ANSYS, INC., Canonsburg, Pennsylvania. The latter can be used to create from both software one three-phase-model with higher amounts of actually simulated water. In thi s study, small amounts of water were added to differently shaped particles using the build-in liquid-bridge model, to analyse and compare the particles flow characteristics in both, wet and dry environments. To gather significant information leading towards precise comparisons, the particles trajectories, velocities and resulting forces against the workpieces can be specifically observed and analysed, whilst this kind of process knowledge could previously never been taken into account without simulation.
  • Publication
    Concept for an actuated variable tool electrode for use in sinking EDM
    ( 2021) ; ;
    Thißen, Kai
    ;
    Schulte Westhoff, Bela
    ;
    Masoud, Abd Elkarim
    ;
    Maas, Jürgen
    Typically, a large number of individual tool electrodes has to be used in sinking electrical discharge machining (sinking EDM) to successfully machine a single workpiece. Due to non-uniform wear and insufficient flushing of the working gap electrode geometries have a significant effect on the process efficiency. This paper discusses the use of an actuated variable tool electrode for sinking EDM to reduce the number of required tool electrodes and to increase the overall process efficiency. A miniaturised linear actuator was developed to individually move electrode segments to form the target shape for the tool electrode. The coordinated actuation of bundled electrode segments introduces new methods for the active flushing within the working gap, which cannot be implemented in conventional sinking EDM. Intelligent sinking strategies can further improve process efficiency by creating and sinking sub-geometries into the workpiece offering improved flushing conditions compa red to the original geometry.
  • Publication
    How Pedestrians Perceive Autonomous Buses: Evaluating Visual Signals
    ( 2021) ;
    Kozachek, Diana
    ;
    Konkol, Kathrin
    ;
    Woelfel, Christiane
    ;
    ;
    Stark, Rainer
    With the deployment of autonomous buses, sophisticated technological systems are entering our daily lives and their signals are becoming a crucial factor in human-machine interaction. The successful implementation of visual signals requires a well-researched human-centred design as a key component for the new transportation system. The autonomous vehicle we investigated in this study uses a variety of these: Icons, LED panels and text. We conducted a user study with 45 participants in a virtual reality environment in which four recurring communication scenarios between an autonomous driving bus and its potential passengers had to be correctly interpreted. For our four scenarios, efficiency and comprehension of each visual signal combination was measured to evaluate performance on different types of visual information. The results show that new visualization concepts such as LED panels lead to highly variable efficiency and comprehension, while text or icons were well ac cepted. In summary, the authors of this paper present the most efficient combinations of visual signals for four reality scenarios.
  • Publication
    Interaction between capabilities of Model Based Systems Engineering on sensor models
    ( 2021)
    Manoury, Marvin Michael
    ;
    Schmidt, Simon
    ;
    Stark, Rainer
    In modern product development, models are often used for different purposes, e.g., system synthesis, trade-off analysis of system parameters or visualization and creation of design concepts. For some models, this purpose as well as the model itself might change over time. New interactions with the target system can occur and new details are added over time. Both have to be integrated immediately into the development procedure. When models are not maintained up to date and not used by different stakeholders, the benefits of the model-based approach are lessened due to the effort for generation and maintenance. The five development capabilities of MBSE, comprising Systems Environment Analytics (SEA), Systems Definition and Derivation (SDD), Systems Interaction Modeling (SIM), Systems Lifecycle Engineering (SLE) and the MBSE Capability and Maturation Matrix (CMM) address this topic on a capability level.In this article, the authors point out the interaction between these d evelopment capabilities on the example of a Pedestrian Emergency Braking System (PEBS) development in automotive industry, with a focus on sensor models. It will be shown exemplary how one development capability might influence another and how this interaction supports the development of complex systems.
  • Publication
    Cutting edge preparation of monolithic ceramic milling tools
    Due to international competition, continuous increases in productivity, product quality and reduction of production costs are required. Especially, the development of milling tools made of innovative cutting materials and application-specific tool geometries for the machining of brittle materials are in focus to overcome these challenges. One approach to improve the performance and the tool behaviour concerning milling of graphite is the use of monolithic ceramic milling tools. Unfortunately, the high brittleness of the ceramic leads to breakouts on the cutting edge during the grinding process. This results in an increased maximum chipping of the cutting edge, which has a significant influence on the milling process. To improve the breakout behaviour, a cutting edge preparation with the immersed tumbling process was applied. To enable a process reliable cutting edge preparation, a suitable lapping medium, the influence of the processing time as well as the depth of imme rsion were investigated. Besides the maximum chipping of the cutting edge, the rounded cutting edge radius was also analysed. The results show that a process reliable cutting edge preparation of monolithic ceramic milling tools with a maximum chipping of the cutting edge RS,max ⤠3 µm and a rounded cutting edge radius of rβ ⤠7 µm could be realised. In future investigations, the experimental applicability of monolithic ceramic milling tools will be proved.
  • Publication
    Development of a Conceptual Understanding of the term Technological Capability
    The term "technological capability" has been studied for almost 40 years. It is an important component of technology strategy that contributes to the success and strengthening of organizations competitiveness. There are numerous attempts to define the term in the literature, but it is always used in different contexts. Thus, the definition of technological capability varies depending on the researcher's perspective and objectives. Therefore, the main objective of this research is to develop an own definition and interpretation of the term technological capability. To this end, an extensive literature review will be conducted to examine the basic concepts and management areas of technological capability and to analyze the individual definitions of the term. The subsequent goal is to derive an understanding of what technological capability is in terms of research and technology organizations.
  • Publication
    Validation of Immersive Design Parameters in Driving Simulation Environments
    ( 2021)
    Lyga, Yvonne
    ;
    Lau, Merle
    ;
    ;
    Stark, Rainer
    Driving simulators are used for the prospective validation of technical systems in the automotive sector. The design of simulation environments can affect drivers and should be considered in investigations of driver-vehicle interactions. The aim of this research is to minimize the gap between driving simulators and real car studies by integrating immersive parameters into simulated driving environments. Stereoscopy, surround sound and motion feedback were analyzed with regard to driver behavior and experience and were then compared to data of a real drive from a previous investigation. The authors conducted a study with N = 48 participants performing a dual-task scenario in a driving simulator. Results reveal significant effects of immersive design parameters on gaze behavior and mental workload. Findings provide guidance for an efficient and cost-effective development of driving simulation environments.