Now showing 1 - 10 of 354
  • Publication
    Additive Fertigung von Funktional Gradierten Materialien für den Verschleißschutz
    ( 2022-11-07)
    Das Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik in Berlin erforscht die Additive Fertigung von Funktional Gradierten Materialien für Verschleiß- und Korrosionsschutzanwendungen. Damit können Bauteile mit maßgeschneiderten Eigenschaften und verbesserter Lebensdauer vollständig additiv aufgebaut oder auch nachträglich gepanzert werden.
  • Publication
    Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition
    ( 2022-11-04)
    Marko, Angelina
    ;
    Bähring, Stefan
    ;
    Raute, Maximilian Julius
    ;
    ;
    Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings, walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way.
  • Publication
    Untersuchung zum Elektronenstrahlschweißen additiv gefertigter Ni-Basis-Bauteile
    ( 2022-10-26)
    Raute, Maximilian Julius
    ;
    ; ;
    Die vorliegende Untersuchung befasst sich mit dem Einfluss des Additive Manufacturing auf die Schweißeignung von Bauteilen aus Inconel 718. Hierfür wurden Proben mittels DED und L-PBF hergestellt und ihr Verhalten in Blindschweißversuchen anhand eines Vergleichs mit konventionellen Gussblechen untersucht. Im zweiten Schritt wurden die verschiedenen additiv hergestellten Proben mit dem Gussmaterial im I-Stoß sowie untereinander verschweißt. Als Schweißverfahren wurde für alle Proben das Elektronenstrahlschweißen angewandt. Zur Auswertung wurde anhand von Schliffen das Nahtprofil vermessen und die Proben auf Poren und Risse untersucht. Zusätzlich wurde die Dichte vermessen und eine Prüfung auf Oberflächenrisse durchgeführt. Das AM-Material zeigte dabei Unterschiede in Nahtform und Defektneigung im Vergleich zum Gusswerkstoff. Insbesondere die DED-proben neigten unter bestimmten Parameterkonstellationen verstärkt zu Porenbildung. Risse konnten nicht beobachtet werden. Trotz auftretender Nahtunregelmäßigkeiten wurde in den kombinierten AM-Schweißproben die Bewertungsgruppe C erreicht. Eine Prüfung der bestehenden Regelwerke zur Schweißnahtbewertung anhand der gewonnenen Erkenntnisse zu additiv gefertigten Proben im Elektronenstrahlschweißprozess zeigte keinen Ergänzungsbedarf.
  • Publication
    Prognose von Qualitätsmerkmalen durch Anwendung von KI-Methoden beim "Directed Energy Deposition"
    ( 2022-10)
    Marko, Angelina
    ;
    Bähring, Stefan
    ;
    Raute, Maximilian Julius
    ;
    ;
    Dieser Beitrag enthält die Ergebnisse eines im Rahmen der DVS Forschung entwickelten Ansatzes zur Qualitätssicherung im Directed Energy Deposition. Es basiert auf der Verarbeitung verschiedener während des Prozesses gesammelter Sensordaten unter Anwendung Künstlicher Neuronale Netze (KNN). So ließen sich die Qualitätsmerkmale Härte und Dichte auf der Datenbasis von 50 additiv gefertigten Probenwürfel mit einer Abweichung < 2 % vorhersagen. Des Weiteren wurde die Übertragbarkeit des KNN auf eine Schaufelgeometrie untersucht. Auch hier ließen sich Härte und Dichte hervorragend prognostizieren (Abweichung < 1,5 %), sodass der Ansatz als validiert betrachtet werden kann.
  • Publication
    Untersuchung zur Herstellung von Cu-Strukturen mittels Wire Electron Beam Additive Manufacturing
    ( 2022-09)
    Raute, Maximilian Julius
    ;
    ;
    Das Additive Manufacturing gewinnt zunehmend an Bedeutung für die Fertigung metallischer Bauteile im industriellen Umfeld. Hierbei wird zunehmend auch auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits in der Industrie etabliert sind und sich in der Regel durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich neben den bereits im großen Umfeld untersuchten Wire-DED-Verfahren auch eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die als Wire Electron Beam Additive Manufacturing bezeichnete Technologie besondere Vorteile gegenüber anderen, zumeist Laser-oder Lichtbogen-basierten DED-Prozessen. Das Verfahren bietet vor allem Potenzial für die Verarbeitung von hochleitfähigen, reflektierenden oder oxidationsgefährdeten Werkstoffen. Insbesondere für die Herstellung von Bauteilen aus Kupferlegierungen zeigt sich der Elektronenstrahl als besonders geeignet. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch übergreifende Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeiten. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel zweier Cu-Werkstoffe. Dabei werden ein korrosionsbeständiger Werkstoff aus dem maritimen Bereich sowie eine Bronze mit guten Verschleißeigenschaften aus dem Anlagenbau getestet. Über mehrstufige Testschweißungen wurden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. Hierfür wurden zunächst optimale Bereiche für den Energieeintrag anhand von Volumenenergie sowie mögliche Schweißgeschwindigkeiten untersucht. Anschließend wurde die Skalierbarkeit des Prozesses anhand von Strahlstrom und Drahtvorschub getestet. Als wesentliche Zielgrößen wurden dabei Spurgeometrie, Aufmischung und Härte herangezogen. Die Eignung der ermittelten Parameter wurde im letzten Schritt exemplarisch anhand einer additiven Testgeometrie in Form eines Zylinders nachgewiesen.
  • Publication
    Laserstrahlhybridschweißen von Türmen für Windkraftanlagen
    ( 2022-08-29)
    Üstündag, Ömer
    ;
    Bakir, Nasim
    ;
    ;
    Knöfel, Frieder
    ;
    ; ;
    Das Laserstrahlhybridschweißen ist beim Schweißen von Türmen für Windkraftanlagen eine Alternative zum Unterpulverschweißen von Dickblechen in Mehrlagentechnik und bietet hier ökonomische und ökologische Vorteile. Der industrielle Einsatz des Verfahrens ist jedoch durch prozessspezifische Herausforderungen eingeschränkt. Die im Beitrag beschriebene kontaktlose elektromagnetische Badstütze dient zur Erweiterung des Verfahrenspotenzials im Dickblechbereich >15 mm.
  • Publication
    Nachhaltiger im Automobil mit TWB
    ( 2022-07-30) ;
    Weber, Joshua
    ;
    Kompenhans, Moritz Niklas
    ;
    Höfemann, Matthias
    ;
    Joos, Paul
    CO2-Footprint von Fahrzeugen wird maßgeblich durch ihr Gewicht bestimmt. Spezielle Blechplatinen - bislang noch nicht in Serie eingesetzte Tailor Welded Blanks aus höchstfesten Stählen mit Festigkeiten von 1000 MPa - können diesen verringern. Die Verarbeitung geschweißter höchstfester Platinen kann jedoch noch zu Diskontinuität im Bauteil führen. Den Prozess rein experimentell auszulegen ist teuer und verschwendet Material und Ressourcen. Dem begegnet das BMWK-Projekt TWBlock mit numerischen Simulationen und deren Absicherung durch die Blockchain-Technologie über die gesamte Prozess- und Wertschöpfungskette.
  • Publication
    Schweißtechnik: KI-basierte Parametrierung
    ( 2022-05-16)
    Baumann, Anja
    ;
    ;
    Fromme, Dirk
    Für die Parametrierung von Schweißverbindungen werden viele Schweißversuche und ein fundiertes Fachwissen benötigt. Die richtigen Parameter auf Anhieb zu finden gleicht der Suche nach der Nadel im Heuhaufen. Mithilfe von künstlicher Intelligenz kann solch eine Suche stark vereinfacht werden. Die Algorithmen, einmal richtig trainiert, können effizient die nahezu richtigen Parameter liefern und somit die Vorserienkosten reduzieren.