Now showing 1 - 10 of 26
  • Publication
    Diamond slide burnishing for the finishing of electrical discharge machined surfaces
    ( 2022) ; ;
    Yabroudi, Sami
    ;
    Waiblinger, N.
    Electrical discharge machining (EDM) represents a key manufacturing technology in a broad range of industries, e. g. aerospace, automotive and mould making. Current industrial and scientific relevant challenges are long machining times to achieve the surface roughness values needed, excessive tool electrode wear and the related huge number of tool electrodes needed. At state of the art, the challenges mentioned strongly limit the economic efficiency of precision EDM processes. To overcome these major challenges, the substitution of time consuming EDM polishing processes by diamond slide burnishing (DSB) shows great potential. During the process, a monocrystalline spherical diamond burnishing tool is moved along the surface of the workpiece with a defined process force. In this way the surface is specifically compressed and roughness peaks are smoothed. Within this work the applicability of diamond slide burnishing for the finishing of electrical discharge machined surfaces was investigated. For this purpose, three VDI grades with different surface roughness values were subsequently machined by DSB. The results show that the surfaces with different initial surface conditions can be successfully finished by DSB. The surface roughness of VDI grade 30 is identified as an upper limit for the surface preparation by EDM. A significant improvement of the surface roughness Ra by 93 % and a reduction of the processing time by 40 % could be achieved by the post-processing using DSB. Therefore, the new process chain presented shows great potential for being used in the field of tool and mould making and especially for the production of injection moulds.
  • Publication
    Characterization and investigation of binderless nanopolycrystalline diamond turning tools for precision machining
    ( 2022) ;
    Sturm, Heinz
    ;
    ;
    Hocke, T.
    ;
    Polte, C.
    ;
    Cemented carbide is used in a wide range of industrial applications as a wear-resistant material, e.g. in mould making and forming industry. At state of the art, the machining of cemented carbide is severely limited because of the hardness, high strength and the resulting wear resistance of the material. Due to the brittle-hard character cemented carbide materials suffer from surface cracks during the machining. The brittle-hard character and the related phenomena result in high tool wear. A promising approach for the machining of cemented carbide is the use of the novel cutting material binderless nanopolycrystalline diamond (NPD) with a dedicated cutting edge design. Within this work, laser machined tools with a corner radius of rε = 400 µm are fully characterized, investigated by Raman spectroscopy regarding the condition of the diamond and applied for first cutting experiments. Cutting investigations were carried out using specimens with a tungsten carbide content of cC = 88 %, a cobalt content of cCo= 12 % and a grain size of dg= 0.5 µm. Prior to these investigations, the condition of the diamonds and possible changes due to the lasered cutting edges were examined by Raman spectroscopy. During the cutting investigations, the brittle-ductile transition as well as the minimum chip thickness were identified by scratching tests. It could be shown that a hydrostatic stress state can be used to achieve ductile chip formation using cemented carbide as workpiece material.
  • Publication
    Residual stresses in additive manufactured precision cemented carbide parts
    ( 2022) ; ;
    Hocke, T.
    ;
    Blankenburg, Malte
    ;
    Lahoda, Christian
    ;
    Due to the good strength properties and high hardness, components made of cemented carbide are used in various industrial sectors as key components, e.g. mould making and matrices. Precision cemented carbide parts are mainly machined by milling and electrical discharge machining (EDM). Nevertheless, long machining times and excessive tool wear are remaining challenges at the state of the art. A promising approach to overcome these challenges is the machining of precise cemented carbide parts using a process chain consisting of near-net-shape laser powder bed fusion (LPBF) and subsequent finishing using a dedicate diamond slide burnishing process. Within previous investigations a geometrical accuracy of ag ≤ 10 µm and a reduction of the surface roughness by Ra = 89 % could be achieved. Within this work plastic deformation induced by the diamond slide burnishing and the effects on the material properties in the surface area were investigated, e.g. residual stresses. For this purpose, the lattice distortion of the metallic cobalt phase was measured by X-ray diffraction using high-energy synchrotron radiation. In addition, the height profile of the residual stresses was also recorded in distances of d = 3 µm to obtain information about the depth effect of the diamond slide burnishing process. Based on the investigations an increase of the residual compressive stresses could be obtained. This shows a particularly positive effect especially for additively manufactured components, as these often show a slight porosity and higher surface roughness as conventional manufactured components. In this way, crack propagation can be prevented and the fatigue strength can be increased.
  • Publication
    Precision Finishing of Additive Manufactured Ti-Al-components Using Diamond Slide Burnishing
    Due to the increasing importance of lightweight design in terms of resource management, titanium aluminium (Ti-AI) alloys are gaining more and more significance. To fully exploit light weight design potentials additive manufacturing (AM) has the ability to shift state of the art product design towards maximised resource efficiency and physically minimized weight. Next to material standardization and qualification processes, major limitations for mass scale industrialization of additive manufacturing are high surface roughness values in a range of 5 μm ≤ Ra ≤ 15 urn and remaining tensile residual stress states. A promising approach to overcome these challenges shows a process chain consisting of near-net-shape laser powder bed fusion (LPBF) and subsequent finishing using a dedicate diamond slide burnishing (DSB) process [1]. Within this work plastic deformation induced by DSB and the effects on the workpiece material properties were investigated.
  • Publication
    Replication of Functional Surfaces Micro-Structured by EDM
    Functional surfaces are applied in a broad range of industries ranging from automotive over aerospace to medical technology. In this paper, the manufacturing of molds micro-structured by sinking electrical discharge machining (sEDM) and the surface replication on polycarbonat (PC) is discussed. The presented analysis shows the ability to replicate hydrophobic and hydrophilic effects on PC samples from micro-structured molds fabricated by sEDM.
  • Publication
    Fundamental study on embedded displacement sensor arrays for ultrasonic-assisted ultraprecision machining
    ( 2022) ; ;
    Bulla, Benjamin
    ;
    Dambon, Olaf
    ;
    Dicke, Clemens
    ;
    Hocke, T.
    ;
    Thißen, Kai
    ;
    Heper, M.
    Ultraprecision machining is a key technology for manufacturing complex steel moulds with dimensional accuracies in sub-micrometer range for mass production of optical components using micro-injection moulding. According to the state of the art, during the machining of carbide-forming metals, such as steel alloys, used single crystal diamond tools suffer from excessive tool wear. In order to overcome this technological und economical limitation, ultrasonic-assisted ultraprecision machining is applied successfully in a broad range of industrial and scientifically applications. Based on the reduction of the contact time between the tool and the workpiece excessive chemical and related tribological tool wear can be avoided. Nevertheless, the cutting speed is strictly limited to deceed critical contact times. Therefore, the monitoring of the tool vibration characteristic and thus the process control is a major challenge and of current industrial and scientifically interest. To overcome these challenges a method for in-situ measurement of the ultrasonic vibration is currently being developed and first results are shown. Using the sophisticated ultrasonic system, developed by SON-X GMBH, Aachen, Germany, up to a frequency fUS= 100 kHz the application of a dedicated eddy current sensor enabled the determination of the real path lines and the exact position of the cutting edge during the whole process with a displacement amplitude AD= 1 µm. The results were subsequently verified by laser vibrometer measurements. As a result of the investigation, an elliptical path movement of the cutting edge in the longitude direction AD,y= ± 1.0 µm and in z-direction AD,z= ± 0.34 µm could be determined using a frequency fUS= 100 kHz. Based on this new measurement method, the vibration characteristic can be specifically varied and adapted to the application. In addition, a comprehensive scientifical knowledge of the process can be gained and used to improve tool wear models.
  • Publication
    Zirconium dioxide-reinforced aluminium oxide ceramic for micro-milling of graphite
    ( 2022) ; ; ;
    Hocke, T.
    ;
    Wendt, M.
    Tool and mould making is one of the most important sectors for production of complex parts with highest economic efficiency. Particularly the milling process is a key technology for the manufacturing of tool electrodes for electrical discharge machining (EDM). Beside copper, graphite is the most industrial relevant tool electrode material for sinking-EDM. According to the state of the art the machining of graphite results in high tool wear in consequence of strong chemical and abrasive effects. Currently, uncoated and cost intensive diamond coated cemented carbide tools are used for industrial applications. High tool costs and short tool life have a negative impact on the economic efficiency of the manufacturing process and increase the overall production costs. To reduce the production costs, the needs for innovative cutting materials and dedicated manufacturing processes are high. The zirconium dioxide-reinforced aluminium oxide ceramic used in this investigation shows a great potential because of the high hardness H, the missing binder phase and the covalent bond. The aim of this investigation is the examination of the application behaviour of ceramic cutting tools during the machining process of graphite. Therefore, dedicated milling tests in partial and full cut were carried out. For evaluation of the application behaviour of the ceramic tools, the surface quality of the machined graphite depending on the wear of the tools was considered. The results show that a minimum surface roughness of Ra = 0.80 µm and average surface roughness of Rz = 6.55 µm could be achieved in first milling tests. Due to a strong sharpening effect of the cutting edge during the machining, the possibility was provided to produce complex components with highest precision and without chipping behaviour. The machining of graphite using ceramic milling tools shows extensive advantages compared to conventional milling tools, which may positively affect the economic efficiency of machining graphite in the future.
  • Publication
    Investigation of additive manufactured tungsten carbide-cobalt tool electrodes for sinking EDM
    Increasing product complexity and continuous developments in related tool and mould making industry require ongoing advances in manufacturing processes like electrical discharge machining (EDM). To meet the increasing requirements, the development of adapted EDM processes and tool designs is necessary. Additive manufacturing (AM) enables the manufacturing of complex tool electrode geometries with interior flushing channels for EDM processes with very few restrictions regarding the design. This accounts even for tungsten carbide-cobalt (WC-Co), which is a suitable material for EDM tool electrodes with various advantages, e.g. thermal and mechanical stability. This paper shows first results of additive manufactured WC-Co tool electrodes for the use in sinking EDM and the related development process.
  • Publication
    Cutting edge preparation of monolithic ceramic milling tools
    Due to international competition, continuous increases in productivity, product quality and reduction of production costs are required. Especially, the development of milling tools made of innovative cutting materials and application-specific tool geometries for the machining of brittle materials are in focus to overcome these challenges. One approach to improve the performance and the tool behaviour concerning milling of graphite is the use of monolithic ceramic milling tools. Unfortunately, the high brittleness of the ceramic leads to breakouts on the cutting edge during the grinding process. This results in an increased maximum chipping of the cutting edge, which has a significant influence on the milling process. To improve the breakout behaviour, a cutting edge preparation with the immersed tumbling process was applied. To enable a process reliable cutting edge preparation, a suitable lapping medium, the influence of the processing time as well as the depth of imme rsion were investigated. Besides the maximum chipping of the cutting edge, the rounded cutting edge radius was also analysed. The results show that a process reliable cutting edge preparation of monolithic ceramic milling tools with a maximum chipping of the cutting edge RS,max ⤠3 µm and a rounded cutting edge radius of rβ ⤠7 µm could be realised. In future investigations, the experimental applicability of monolithic ceramic milling tools will be proved.
  • Publication
    Application of tool electrodes oxidised with humid and dry air during the electro-discharge drilling of MAR-M247 alloy
    ( 2021) ; ; ;
    Camin, Bettina
    ;
    Chocholaty, Ondřej
    ;
    Dinh, Ngoc Chuong
    The requirements and challenges of machining advanced materials in the field of aerospace, automotive and tool industry are increasing constantly. Due to their mechanical properties, cutting of high-strength materials such as superalloys is severely limited. Electro-discharge drilling can be used for the manufacturing of holes in hard to machine materials. Although electrical discharge machining (EDM) is successfully applied to the machining of holes in turbine blades, a lack of performance and challenges concerning the geometrical accuracy still remain. By applying inner flushing, the resulting electrically conductive debris is flushed through the lateral working gap, increasing the probability of arcs and short circuits. The resulting increased tool wear, conicity of the hole, limited hole depth and process instabilities are still challenging in electro-discharge drilling. In order to decrease the effects of the arcs and short circuits, a surface modification is appli ed to increase the electrical resistance of the lateral surface of the tool electrode. As a result, the mentioned impairments occur less frequently due to decreased occurrence of arcs and short circuits in the lateral working gap. For the present investigation copper tool electrodes were thermally oxidised in dry and humid air with different durations and used afterwards for electro-discharge drilling of MAR-M247. The tests were carried out on the machine tool AGIETRON Compact 1 from the company GF AgieCharmilles, Losone, Switzerland. Holes with a depth of t = 11 mm were drilled using various surface-modified tool electrodes with a diameter of d = 2 mm. Oxidation with dry air and a extended oxidation time resulted in a 18 % lower erosion duration, accompanied by an increase of the linear wear of the tool electrode Île below 10 %.