Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Informed Machine Learning - A Taxonomy and Survey of Integrating Knowledge into Learning Systems

Informed Machine Learning - Towards a Taxonomy of Explicit Integration of Knowledge into Machine Learning
: Rüden, Laura von; Mayer, Sebastian; Beckh, Katharina; Georgiev, Bogdan; Giesselbach, Sven; Heese, Raoul; Kirsch, Birgit; Pfrommer, Julius; Pick, Annika; Ramamurthy, Rajkumar; Walczak, Michal; Garcke, Jochen; Bauckhage, Christian; Schuecker, Jannis

Volltext ()

Online im WWW, 2020, arXiv:1903.12394, 20 S.
Bericht, Elektronische Publikation
Fraunhofer ITWM ()
Fraunhofer IAIS ()
Fraunhofer SCAI ()
Fraunhofer IOSB ()
machine learning; prior knowledge; expert knowledge; Informed; hybrid; survey

Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process, which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. First, we provide a definition and propose a concept for informed machine learning, which illustrates its building blocks and distinguishes it from conventional machine learning. Second, we introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Third, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.